AMANDA-B10 Limit on UHE Muon-Neutrinos

Stephan Hundertmark, Stockholm Universitet

International Workshop on UHE Neutrino Telescopes Chiba, July 29-30, 2003

Why looking for UHE neutrinos ?

- CR above GZK exist ⇒ UHE neutrinos exist !
- Where are the sources ?
- CR above GZK produced by neutrinos ?

UHE Neutrino Sources

➢ Sources of UHE neutrinos are:

- ➤ Active Galactic Nuclei (AGN)
- Topological Defect Models
- > GZK (CR + CMB)
- Evaporating Mini-Black Holes
- > Neutrinos may carry information from
 - highest energy and most distant phenomena
- Discovery Potential for the unknown

High Energy Limits

No stringent limits above 10¹⁶eV

(A) Flys Eye (B) AMANDA v_e (97) (C) Macro v_{μ} (D) Baikal v_e (E) AMANDA v_{μ} (97) (F) AMANDA v_e (00)

Availible Limits and Future Experiments

Pros and Cons for UHE

- ► Raising crossection for $\nu \rightarrow \mu$
- \succ Raising A_{eff}
- > Muon range well above ~10 km for $E_{\mu} > 10^{16} \text{ eV}$

 \Rightarrow Large volume can be monitored

But:

- Upgoing neutrinos are absorbed by the earth
- Neutrino interaction limited by ice overburden

Signal concentrated at the horizon

Background to UHE Neutrinos

VENUX VENUX VENUX

Background to UHE neutrinos are large atmospheric muon bundles

 \downarrow

Develop analysis that rejects downgoing muon bundles while retaining efficency for neutrino induced muons from i.e. E⁻² source

AMANDA-B10 Detector ('97)

- 10 Strings
- 302 OMs
- ~120 m Diameter
- ~400m Height
- Analog Signal over ~2 km Cable
- Overburden ~1500 m

Definition of used Variables

<u>N GRUNN GRUNN GRUNN GRUNN GRUNN GRUNN GRUNN GRUNN GRUNN GRUN</u>

- 1. NCH Number of hit channels
- 2. NH Number of hits for all channels
- 3. F1H Fraction of hit channels with exactly one hit
- 4. MA Mean amplitude for hit channels
- 5. $\theta(FG)$ Zenith angle for first guess.
- 6. $\theta(LR)$ Zenith for likelihood reconstruction
- 7. \mathscr{L} Likelihood for LR
- 8. *S* Smallest moment of tensor of inertia
- A. NN1 Neural Net using 3., 5., 6. and 7.
- B. NN2 Neural Net using 1., 2., 3., 4. and 8.

Analysis Steps

- > Start with high multiplicity sample (NCH>100, 131 days) $\Rightarrow \sim 4.10^6$ events
- ≻ Apply F1H <0.65 \Rightarrow 263 k events
- ≻ Apply NN1 >0.37 \Rightarrow 3326 events
- > Optimal Selection Criterion procedure:
 - → Apply NN2 >0.7 \Rightarrow 6 events (8.3 expected)
- Evaluate systematic errors
- ➤ Derive limit

Simulation of Background

Two sets are generated with Corsika:

- 1.) Cosmic Ray spectrum following Wiebel-Sooth
- 2.) Protons and Iron only, following E^{-2} (\rightarrow high energy events)

Background Simulation / Experiment

~ $4 \cdot 10^6$ events

Background Simulation / Experiment

263k events

Background Simulation / Experiment

Optimal Cut

Applying the Final Cut

Sensitivity: $E^2 \phi_{90} = 9.3 \cdot 10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ GeV}$

Experiment: 6 Corsika: 8.3

→ Feldman, Cousin event upper limit is 3.6 (90% C.L.) or

 $E^2 \phi_{90} = 5.3 \cdot 10^{-7} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ GeV}$ (preliminary)

Effective Area

km^{2} • trigger 🔳 final 0.9 0.8 0.7 0.6 trigger 0.5 0.4 0.3 0.2 final 0.1 0 12 15 17 18 19 20 13 14 16 $\log_{10}(E_{\mu}) eV$

Including Systematics

UN TENUX TENUX TENUX TENUX TENUX TENUX TENUX TENUX TENUX

Absolute detector sensitivity	12%
Optical Ice Parameters	34%
Muon Propagation	6%
Neutrino Cross Section	8%
Primary CR Flux	20%
Composition	16%

₩

$$E^2 \phi_{90} = 7.2 \cdot 10^{-7} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,\mathrm{sr}^{-1} \,\mathrm{GeV}$$

The Limit on UHE Muon-Neutrinos

and the second second

2 1

Limits on UHE Source-Models

model	n _s (NN2>0.7)	mrf	act. limit
	5		(no sys + osc)
		_	
S 91	2.1	3	1.7
S 96	8	0.8	0.45
P97	7	0.9	0.51
TD	0.4	16.6	9

Remarks to Limits

TENIX TENIX TENIX TENIX TENIX TENIX TENIX

- No oscillation effects are included, they will cut the expected signal from muon-neutrions to 50%
- Currently the sensitivity to electron-neutrinos is evaluated
- Some of the lost muon-neutrinos can be compensated by detecting tau-neutrinos
- Limits are preliminary

Summary

- InIce detectors are usefull tools to search for UHE neutrinos (now !)
- This analysis extends the energy reach of AMANDA to a very interesting physics region
- The current best limit at UHE energies already with AMANDA-B10 !
- AMANDA-B10 is limited to even higher energies due to saturation -> does not apply to AMANDA-II and IceCube
- Important information comes from F1H -> TWR will help a lot