

ANTARCTIC MUON AND NEUTRINO DETECTOR ARRAY

Recent Results

Lutz Köpke University of Mainz, Germany July 31, 2003

http://amanda.uci.edu

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Contributed papers to ICRC

- Costilicrays
- Response of AMANDA to cosmic ray muons
- ray flux measurement
- Cosmic ray composition at the knee with SPASE and AMANDA
- Atmospheric neutrino and muon spectra
- Search for diffuse fluxes of extraterrestrial muon neutrinos
- AMANDA-B10 limit on UHE-Neutrinos
- Search for high energy neutrinos of all flavours
- Search for extraterrestrial point sources of neutrinos
- Search for muons from WIMP annihilation in center of earth
- Search for high energy neutrinos from GRBs
- Online search for neutrino bursts from Supernovae

Jilino

- ► New capabilities of the AMANDA detector
- The IceCube high energy neutrino telescope
- IceTop: the surface component of IceCube
- Simulation of ice Cherenkov detectors for IceTop

black: parallel talk

+ 3 individual contributions

Physics motivation

origin and acceleration of cosmic rays
understand cosmic cataclysms
find new kind of objects?

representation of the matrix representation

- dark matter (neutralino annihilation)
 - tests of relativitiy
 - search for big bang relics ...
 - effects of extra dimension etc. ...

Neutrino source candidates

Supernova remnant

Crab nebula

Microquasar (SS433 etc.)

Active Galaxy (optically dense, e.g. FRII)

Black hole with \approx mass of sun

galactic

Black hole with 10⁸ x mass of sun

extra-galactic

Detection of ν_e , ν_μ , ν_τ $v_e:v_{\mu}:v_{\tau}=1:1:1$ at Earth ! $v_e:v_\mu:v_\tau=1:2:0$ at source oscillation O(km) long muon tracks Electromagnetic and hadronic cascades em. and hadronic cascade CC: hadronic (and em) cascade /eμ,τ ≈ 15 m ~ 5 m NC: hadronic cascade v_{μ} τ Veµ,τ background: em cascade (brems, delta, pair) direction determination by Cherenkov light timing

Detection of muon neutrinos

atmospheric muons

Earth acts as shield

Above O(PeV): significant v absorption:

O(PeV): use horizontal events O(10 PeV): use events from above

Complementarity (point sources): E ≈< 100 TeV

Mediterranean (ocean) Antares, Nestor, 1 km³ ...

South Pole (ice) AMANDA, ICECUBE

galactic center in middle

dots: distribution of gamma ray bursts (GRBs)

Northern hemisphere detectors

Baikal NT200

1100 m deep data taking since 1998 new: 3 distant strings

Antares

March 17, 2003

2 strings connected 2400 m deep completion: start 2006

Nestor

March 29, 2003 1 of 12 floors deployed 4000 m deep completion: 2006

The AMANDA Collaboration ≈ 150 members

Bartol Research Institute UC Berkeley UC livine Pennsylvania State UW Madison **UW** River Falls LBL Berkeley U. Simón Bolivar, Caracas VUB, Brussel **ULB-IHEE**, Bruxelles U. de Mons-Hainaut Imperial College, London DESY, Zeuthen Mainz Universität Wuppertal Universität Stockholm Universitet Uppsala Universitet Kalmar Universitet South Pole Station Antarctica

+ associated institutes e.g. Chiba University

The laboratory

AMANDA

ALC: NO VALUE

South Pole

The new station operating at least until 2035

The Dome

.

........

dibi

Two events ...

Before cuts: 264 hits, 264 OMs After cuts: 264 hits, 264 OMs

200 TeV v_e candidate

Detector capabilities

muons:

2.0 - 2.5° directional error: energy resolution: 0.3 - 0.42π coverage:

primary cosmic rays: (+ SPASE) energy resolution: 0.07 - 0.10

, cascades": (e^{\pm} , τ^{\pm} , neutral current) zenith error: $30 - 40^{\circ}$ energy resolution: 0.1 - 0.2 4π coverage:

 v_{μ} effective area (schematic): v-interaction in earth, cuts

 $2 - 5m^2$ $\propto E_v^2$ 3 cm²

100 GeV 100 TeV 100 PeV

 $\sigma[\log_{10}(E/TeV)]$

Atmospheric muons in AMANDA-II

Atmospheric muons and neutrinos: AMANDA's test beams

much improved simulation ...but data 30% higher than MC ...

normalize to most vertical bin

Systematic errors:

 10% scattering (20m @ 400nm) absorption (110m @ 400nm)
20% optical module sensitivity
10% refreezing of ice in hole

threshold energy ~ 40 GeV (zenith averaged)

talk HE2.1-13

Cosmic Ray flux measurement

In some cases ice and OM-sensitivity effect can be circumvented ...

empirical separation of ice and OM sensitivity effects

for QGSJET generator:

 $rac{\phi}{=} \gamma(H) = 2.70 \pm 0.02$ $rac{\phi}{=} \Phi_0(H) = 0.106(7) \text{ m}^{-2}\text{s}^{-1}\text{sr}^{-1}\text{TeV}^{-1}$

Spectral index γ compatible with direct measurements, error competivie

talk HE 1.1-25

cosmic ray composition studies

SPASE-2 (electronic component) - AMANDA B10 (muonic component)

- unique combination!

robust evidence for composition change around knee ...

talk HE 1.1-25

Composition change around "knee"

Atmospheric v's in AMANDA-II

neural network energy reconstructionregularized unfolding

measured atmospheric neutrino spectrum

spectrum up to 100 TeVcompatible with Frejus data

presently no sensitivity to LSND/Nunokawa prediction of dip structures between 0.4-3 TeV

In future, spectrum will be used to study excess due to cosmic v's

talk HE 2.3-6

poster HE

Excess of cosmic neutrinos? Not yet ...

... for now use number of optical modules hit as energy variable ...

Diffuse flux muon neutrinos

Note that limits depend on assumed energy spectrum ...

Diffuse limit cascades

► after acceptance expect: $v_e : v_\mu : v_\tau \approx 1 : 0.67 : 0.85$ events ► 2 candidate events total observed

talk HE 2.3-4

90% CL upper limit: $E^{2}\Phi_{all v}$ (E) < 9.10 ⁻⁷ GeV cm⁻²s⁻¹sr⁻¹

Flux results summary (all flavors)

assuming $v_e: v_\mu: v_\tau = 1:1:1$ ratio:

► special analysis for resonant $\overline{v_e} + e^- \rightarrow W^- \rightarrow \overline{v_e} + e^$ production (6.3 PeV)

multiplicative factor 3 applied for single v_e , v_μ channels ...

... can combine analyses !

Point source search in AMANDA II

Search for excess events in sky bins for up-going tracks

ELIMINARY 697 events observed above horizon above horizon: mostly atmospheric v's \sim 3% non-neutrino background for θ > 5° cuts optimized in each declination band 24 h below horizon:mostly fake events ▶ sky subdivided into 300 bins (~7°x7°) -90'

no clustering observed - no evidence for extraterrestrial neutrinos ...

talk HE 2.3-5

RELIMINARY

Selected point source flux limits

sensitivity \approx flat above horizon - 4 times better than B10 ¶!

declination averaged sensitivity: $\Phi_v^{\text{lim}} \approx 2.3 \cdot 10^{-8} \text{ cm}^{-2} \text{s}^{-1} @90\%$

Sources	declination	1997 ¶	2000
SS433	5.0 [°]	-	0.7
M87	12.4 [°]	17.0	1.0
Crab	22.0 [°]	4.2	2.4
Mkn 421	38.2°	11.2	3.5
Mkn 501	39.8°	9.5	1.8
Cyg. X-3	41.0 [°]	4.9	3.5
Cas. A	58.8°	9.8	1.2

upper limits @ 90% CL in units of 10⁻⁸cm⁻²s⁻¹

¶ published Ap. J, 582 (2003)

talk OG 2.4-7

GRB ν search in AMANDA

Search for v_{μ} candiates correlated with GRBs - background established from data

	4
	MAK
	MI
OP4	

Year	#GRB	bkg	observed
1997	78	0.10	0
1998	99	0.20	0
1999	96	0.20	0
2000	44	0.60	0
Total	317	1,30	0

 ⇒ 317 BATSE triggers (1997—2000)
⇒ effective μ-area ≈ 50000 m² low background due to space- time coincidence

No excess observed!

assuming WB spectrum 4 x 10⁻⁸GeV/s/cm²/sr

analysis continues with non-triggered BATSE and IPN3 data ...

Outlook

... did not mention new improved search for WIMPs (HE 3.3-6) ... supernova detection (1-P-258) etc.

...no extraterrestrial neutrinos found yet ...but:

combined analysis 1997-2003: 8 x more days !

reproved selection and analysis methods ...

new transition waveform based readout installed 02/03 improved performance in particular at high energies (1-P-264)

▶ first IceCube strings 2004/05 – combined analysis with AMANDA

Importance of all flavor detection

Extended source with $v_e:v_{\mu}:v_{\tau}=1:2:0$ production (e.g. π^{\pm} decay): *E.g.: Maki-Nakagawa-Sakato mixing matrix with* $\theta_{12}=30^{\circ}, \ \theta_{23}=45^{\circ}, \ \theta_{13}=0^{\circ}:$

$$U^{\text{NMS}} = \sqrt{\frac{1}{8}} \times \begin{pmatrix} \sqrt{6} & \sqrt{2} & 0 \\ -1 & \sqrt{3} & 2 \\ 1 & -\sqrt{3} & 2 \end{pmatrix}$$
 $v_e:v_{\mu}:v_{\tau}=1:1:1 \text{ on earth}$

• O(10) x less background for v_e – but you don't profit from long μ -range • Regeneration of v_{τ} - no absorption in earth even at very high energies !

Theoretical bounds and future

