Characteristics difference of a single muon and a muon bundle was investigated in ordert to separate signals from backgrounds.
NPE lateral distribution for each OM
Energy dependence
JULIeT, 10^5 GeV
JULIeT, 10^6 GeV
JULIeT, 10^7 GeV
JULIeT, 10^8 GeV
CORSIKA, 10^5 GeV
CORSIKA, 10^6 GeV
CORSIKA, 10^7 GeV
CORSIKA, 10^8 GeV
10^5 GeV, red: JULIeT, blue: CORSIKA
10^6 GeV, red: JULIeT, blue: CORSIKA
10^7 GeV, red: JULIeT, blue: CORSIKA
10^8 GeV, red: JULIeT, blue: CORSIKA
NPE longitudinal distribution for each OM (ATWD)
10^5 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^6 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^7 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^8 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
NPE longitudinal distribution for each OM (FADC)
10^5 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^6 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^7 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
10^8 GeV
JULIeT, 0. < cos(zenith angle) < 0.2
JULIeT, 0.2 < cos(zenith angle) < 0.4
JULIeT, 0.4 < cos(zenith angle) < 0.6
JULIeT, 0.6 < cos(zenith angle) < 0.8
JULIeT, 0.8 < cos(zenith angle) < 1.
CORSIKA, 0. < cos(zenith angle) < 0.2
CORSIKA, 0.2 < cos(zenith angle) < 0.4
CORSIKA, 0.4 < cos(zenith angle) < 0.6
CORSIKA, 0.6 < cos(zenith angle) < 0.8
CORSIKA, 0.8 < cos(zenith angle) < 1.
0. < cos(zenith angle) < 0.2
0.2 < cos(zenith angle) < 0.4
0.4 < cos(zenith angle) < 0.6
0.6 < cos(zenith angle) < 0.8
0.8 < cos(zenith angle) < 1.
PulseTime80 - LETime Vs distance for each OM
Energy dependence
JULIeT, 10^5 GeV
JULIeT, 10^6 GeV
JULIeT, 10^7 GeV
JULIeT, 10^8 GeV
CORSIKA, 10^5 GeV
CORSIKA, 10^6 GeV
CORSIKA, 10^7 GeV
CORSIKA, 10^8 GeV
10^5 GeV, red: JULIeT, blue: CORSIKA
10^6 GeV, red: JULIeT, blue: CORSIKA
10^7 GeV, red: JULIeT, blue: CORSIKA
10^8 GeV, red: JULIeT, blue: CORSIKA
Distance Vs PulseTime80 - LETime for each OM
Energy dependence
JULIeT, 10^5 GeV
JULIeT, 10^6 GeV
JULIeT, 10^7 GeV
JULIeT, 10^8 GeV
CORSIKA, 10^5 GeV
CORSIKA, 10^6 GeV
CORSIKA, 10^7 GeV
CORSIKA, 10^8 GeV
10^5 GeV, red: JULIeT, blue: CORSIKA
10^7 GeV, red: JULIeT, blue: CORSIKA
10^8 GeV, red: JULIeT, blue: CORSIKA
Residual time (ATWD) Vs distance for each OM
Energy dependence
JULIeT, 10^5 GeV
JULIeT, 10^6 GeV
JULIeT, 10^7 GeV
JULIeT, 10^8 GeV
CORSIKA, 10^5 GeV
CORSIKA, 10^6 GeV
CORSIKA, 10^7 GeV
CORSIKA, 10^8 GeV
10^5 GeV, red: JULIeT, blue: CORSIKA
10^6 GeV, red: JULIeT, blue: CORSIKA
10^7 GeV, red: JULIeT, blue: CORSIKA
10^8 GeV, red: JULIeT, blue: CORSIKA
Residual time (FADC) Vs distance for each OM
Energy dependence
JULIeT, 10^5 GeV
JULIeT, 10^6 GeV
JULIeT, 10^7 GeV
JULIeT, 10^8 GeV
CORSIKA, 10^5 GeV
CORSIKA, 10^6 GeV
CORSIKA, 10^7 GeV
CORSIKA, 10^8 GeV
10^5 GeV, red: JULIeT, blue: CORSIKA
10^6 GeV, red: JULIeT, blue: CORSIKA
10^7 GeV, red: JULIeT, blue: CORSIKA
10^8 GeV, red: JULIeT, blue: CORSIKA
Remarks
Nue produces a cascade event that is quite different from backgrounds.
Since the nue proeduces a cascade, the longitudinal development is relatively
short. So, easy separation from background. On the other hand, sometimes, the
starting point are mis-reconstructed due to noise. This has to be avoided for
the better separation.
On the other hand, the time residual when the trakc hypothesis is assumed
is not reaaly a good parameter for the track distance.
Keiichi Mase
Last modified: Mon Aug 20 17:45:19 JST 2007