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The Elbert formula [1] gives the number of muons with energies greater
than Eµ in a bundle as follows:

Nµ =
ET

E0

A2

cos θ
ξ−α(1 − ξ)β (1)

ξ =
AEµ

E0

where A is the mass number of primary cosmic rays with energy of E0, θ is
zenith angle of a muon bundle. The other parameters are ET = 14.5 GeV,
α=1.757, β=5.25.

One can differentiate it to obtain the differential spectrum of muons in a
bundle dNµ/dEµ.

At this stage of the IceCube analysis, we are not resolving individual
muons, but measuring its bundle energy resulted from summing all the muon
energies contained in the bundle. It is, therefore, useful to define the bundle
energy as follows:

EB
µ ≡

E0/A
∫

Eth

dNµ

dEµ
EµdEµ (2)

The approximation using the fact that the integration above is mainly
determined in the regime of ξ � 1 leads to the relatively simple formula to
represent the bundle energy as

EB
µ = ET

A

cos θ

α

α − 1

(

AEth

E0

)

−α+1

. (3)

1



We approximate a bundle event as a single muon with energy of EB
µ . This

approximation should work well in the analysis based on Npe which in turn
calorimetrically measures the energy deposit that is proportional to EB

µ to
the first approximation. Then we can estimate the rate of muon “bundle”
by rewriting the primary cosmic ray flux as a function of EB

µ , i.e.,

dJB
µ

dEB
µ

=
dE0

dEB
µ

dJCR

dE0

(E0(E
B
µ , cos θ, A, Eth)). (4)

Here dJCR/dE0 is the relatively well-measured cosmic ray spectrum that
can be represented by the power law form κE−γ

0 . The formula described by
Eq 3, then gives the bundle rate. We get

dJB
µ

dEB
µ

=
1

α − 1

E0

EB
µ

dJCR

dE0

(E0) (5)

E0 =

(

cos θ

A

α − 1

α

EB
µ

ET

)

1

α−1

AEth (6)

Eq. 5 provides the atmospheric muon intensity at the surface. The pa-
rameters in Eq. 6 are to be determined by the IceCube high energy data
samples. The most uncertain parameter which is a deciding factor in the
normalization to give the absolute intensity is Eth, the threshold energy of
muons in the integral of Eq. 2. Because the IceCube detector is only sensitive
to sufficiently energetic muons, it is likely that Eth is around 1 TeV. The real
data will tell us this value.

Since the IceCube is an underground detector, we see muons after prop-
agating inside the earth. The propagation reduces the muon energy from Eµ

to EI3
µ . The bundle energy at the IceCube depth is given by

EB,I3

µ ≡

Emax
∫

Eth,I3

dNµ

dEI3
µ

EI3

µ dEI3

µ (7)

The numerical calculation as the JULIeT does is able to estimate distri-
bution of EI3

µ , but the simple analytic representation is more useful in the real
data fitting to obtain the parameters such as Eth. The CEL approximation
gives

EI3

µ = (Eµ + ε) exp−βµX
−ε (8)

2



where βµ ∼ 4 × 10−6 cm2 g−1 is the inelasticity parameter due to the muon
interactions, and ε ∼ 500GeV is the critical energy below which the ionization
loss dominates over the radiative interactions. X is the slant depth of the
muon trajectory. Eqs. 7 and 8 give

EB,I3

µ ' e−βµXEB
µ −

β

α
(1 − e−βµX)A

ε

E0

EB
µ . (9)

Here EB
µ must be calculated for the threshold energy of muons at the IceCube

depth, Eth,I3, which is related to the one at the earth surface by Eq. 8. One
can see that the second term represents the contribution from the ionization
loss. Because the EHE regime is E0 ≥ 1 PeV � ε, this term is negligible.
Note that we used the approximation here that βµ is energy independent,
which is not exactly true because of the photo-nuclear reaction. The sys-
tematics by introducing this approximation should be properly accounted in
fitting the data.
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