進捗報告2014.07.04

(1) Fiber Sheet 製作と性能評価測定

- ファイバーライトガイド製作
 - FLa37 … BYOR(6x10cm²)
 - FLa38 ···· ScYOR(6x10cm²)
 - FLa39 ···· ScSCYY(6x10cm²)

- ファイバーシート性質測定
 - Attenuation Length, Bending Loss

詳細 → ページ3

- ファイバーライトガイド宇宙線による性能評価測定
 - エアロゲル(1.05, 厚さ6cm)、PMT R9880U-210&20を使用
 詳細 → ページ7

Setup for WLSF properties

ADC distribution

PMT: R9880U-210 BAC2397 Gain=3.62x10⁷ @1300V : R9880U-20 BCA6347 Gain=4.76x10⁷ @1300V

Attenuation Length

減衰長(Att. Length)は光量が1/eになる 長さと定義される。 $|(x)=|_0^* exp[-x/\lambda]$

Bending Loss

曲げ損失が1dB未満である最小の直径で評価する。

TOF information: {(tdc[3]+tdc[4])-(tdc[1]+tdc[2])}x0.025/2 nsec

Kinds of Fiber Sheets (1) FLa37: (BYOR) [6x10cm²] (2) FLa38: (ScYOR) [6x10cm²] (3) FLa39: (ScScYY)[6x10cm²]

Analysis (1) TOF cut: Mean±Sigma 1.31 ns < TOF < 2.44 ns

FLa37(BYOR)[6x10cm²]

4.5 time [nsec]

Before: eff.=0.648, 1.045 p.e. After: eff.=0.659, 1.074 p.e.

FLa38(ScYOR)[6x10cm²]

"or" logic efficiency & number of photoelectrons @ FLa38,aerogel(1.05, 6cm) Threshold level 0.5 p.e. Before: eff.=0.758, 1.420 p.e. After: eff.=0.766, 1.451 p.e.

FLa39(ScScYY)[6x10cm²]

"or" logic efficiency & number of photoelectrons @ FLa39,aerogel(1.05, 6cm) Threshold level 0.5 p.e. Before: eff.=0.654, 1.063 p.e. After: eff.=0.641, 1.024 p.e.

まとめ

fiber sheet performance

シンチファイバーがチェレンコフ光のライトガイド として向いている?

(2) 論文読

V.V. Anisimovsky, et al., Phys. Lett. B 562(2003) 166-172.

論文紹介 2014.07 H.ITO

PHYSICS LETTERS B

Physics Letters B 562 (2003) 166-172

www.elsevier.com/locate/npe

First measurement of the T-violating muon polarization in the decay $K^+ \rightarrow \mu^+ \nu \gamma$

KEK-PS E246 Collaboration

V.V. Anisimovsky^{a,*}, A.N. Khotjantsev^a, A.P. Ivashkin^a, M. Abe^b, M. Aliev^a, M. Aoki^c, Y. Asano^b, M. Blecher^d, P. Depommier^c, M. Hasinoff^f, K. Horie^g, H.C. Huang^h, Y. Igarashi^g, J. Imazato^g, M.M. Khabibullin^a, Yu.G. Kudenko^a, Y. Kuno^c, A.S. Levchenko^a, G.Y. Lim^g, J.A. Macdonaldⁱ, O.V. Mineev^a, N. Okorokova^a, C. Rangacharyulu^j, S. Shimizu^c, Y.-M. Shinⁱ, N.V. Yershov^a, T. Yokoi^g

 ^a Institute for Nuclear Research RAS, 117312 Moscow, Russia
 ^b Institute of Applied Physics, University of Tsukuba, Tsukuba 305-0006, Japan ^c Osaka University, Osaka 560-0043, Japan
 ^d Virginia Polytechnic Institute and State University, VA 24061-0435, USA ^e Université de Montréal, Montréal, H3C 3J7 Canada ^f Université de Montréal, Montréal, H3C 3J7 Canada
 ^g Université de Montréal, Montréal, Moncouver, V6T 2A3 Canada
 ^g High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
 ^h Department of Physics, National Taiwan University, Taipei 106, Taiwan, ROC ⁱ TRIUMF, Vancouver, V6T 2A3 Canada
 ^j University of Saskatchewan, Saskatoon, S7N 5E2 Canada

Received 4 April 2003; accepted 9 April 2003

Editor: L. Montanet

Abstract

KEK E246(1996-1998) Fast result
$$P_T$$
 obtained in the analysis of the $K_{\mu 2\gamma}$

Experiment

Detector

- Beam: stopped kaon
- AC: K/ π , trigger eff.~99%
- Target: 256 Scint. Fibers
- Spectrometer: 12 sectors toroidal super conductor magnet
- γ -ray Colorimeter: 768 CsI(TI)s, 0.75 x 4 π sr (solid angle) $\sigma_{\rm F}/{\rm E}{\sim}2.7\%$ @200MeV
- Tracking: C2, C3 and C4, multi wire drift chamber $\sigma_{\rm p}{\sim}2.6~{\rm MeV/c}$ @205MeV/c
- PID: TOF & μ^+ counter, e⁺/ μ^+/π^+

Experiment

The T-violating asymmetry was extracted using a double ratio as:

$$A_{\rm T} = \frac{1}{4} \left[\frac{(N_{\rm cw}/N_{\rm ccw})_{\rm fwd}}{(N_{\rm cw}/N_{\rm ccw})_{\rm bwd}} - 1 \right].$$
(1)

Here, N_{cw} and N_{ccw} are the sums over all 12 sectors of counts of clockwise (cw) and counter-clockwise (ccw) emitted positrons. Indices 'fwd' and 'bwd' denote two classes of events: forward events (fwd) when the angle between the photon and the beam direction (z-axis) was less than 70° and backward events (bwd) when the angle between the photon and the beam direction was more than 110°. The signal values N_{cw} and N_{ccw} were extracted by integrating the positron time spectrum in the polarimeter after subtraction of the background.

The value of P_{T} is related to A_{T} by

$$P_{\rm T} = \frac{A_{\rm T}}{\alpha f (1 - \beta)},\tag{2}$$

where α is the analyzing power of the polarimeter, f is an angular attenuation factor and β is the overall fraction of all backgrounds.

V.V. Anisimovsky, et al., Phys. Lett. B 562(2003) 166-172.

Analysis

The first stage of the analysis

Rejection of Ke3 using the time-of-flight technique. The "cloud" in the bottom-left corner corresponds to positrons, the events inside the rectangle are muons.

 $K\mu 2\gamma \geq K\mu 3$ を抽出した

V.V. Anisimovsky, et al., Phys. Lett. B 562(2003) 166-172.

Analysis

Events to 190 E1200 >12 1.1 \$20 150 100 0.9 125 50 100 0.8 60 75 0.7 50 40 0.6 0.5 20 0.4 0 170 0.1 0.2 0.3 0.4 0.5 0.6 0.7 220 0.8 0.9 190 200 210 230 m2 (MeV2/c*) p. (MeV/c)

The second stage of the analysis

 $K\mu 2\gamma \ge K\mu 3$ を区別する方法は ν のmissing mass

 $K\mu 2\gamma \cdots Fv = -0.095$

F_△= -0.043

MCシミュレーション

• Exp data MC simu $K \mu 2 \gamma$ MC simu $K \mu 3$ — MC simu $K \mu 2 \gamma + K \mu 3$

f_κ= -159 MeV J. Bijnens, G. Ecker, J. Gasser, Nucl. Phys. B 396 (1993) 81.

Analysis

 $exp A_{T} = (-0.099 \pm 0.320) \times 10^{-2}$

 $P_{T} \sim -0.57 \times 10^{-3} \qquad \alpha = 0.289 \pm 0.015 \\ \beta \sim 0.25 \\ f = 0.80 \pm 0.03$

P_T → P_T(FSI) 理論的不確定性~15%, Fv= -0.095, F₄= -0.043

 $P_{T}(FSI)=(-0.64\pm1.85(stat))x10^{-2}$

Systematic error 12セクターでとった。 $\delta P_T^{sys} \sim 1.0 \times 10^{-3}$

Fig. 8. The dependence of the transverse asymmetry $(A_{\rm T})$ on the sector number. The rightmost point represents the sum of the asymmetries over all 12 sectors. The error bars show the statistical errors.

Result $P_{T}(FSI)=(-0.64\pm1.85(stat)\pm0.10(syst))x10^{-2}$

(3) MPPC + EASIROC module制御

EASIROC module制御

- PC + LAN制御
- MPPC読出コネクタ作成
- ダークカレント検出

(3) MPPC + EASIROC module制御

ダークカレント検出

(3) MPPC + EASIROC module制御

今週のまとめ

MPPC2チップの読出環境作り EASIROC モジュールの制御入門 ダークカレント測定 ペデスタルが太い、統計数少ない

・ペデスタルが大きくなる原因の解消。 ・ダークカレントの測定のやり直し。 ・LED光源による測定開始。

(4) 次週スケジュール

博士後期課程願書提出:書類作成+プレゼン作成

- (1) 研究過程報告書
- (2)研究計画書書
- (3) プレゼンスライド構成考案

論文読み(x1)

KEK E246, TREK, time reveres symmetry vioration

MPPC + EASIROC制御

- (1) LED test, Dark current, Scinti. Test
- (2) CAMACとの連動
- (3) ADC + TDC読出し

Fiber Sheet 製作

FLa40 ··· SCSF(x4)position[5x5] to MPPCs

FLa41 … ScYOR(5x20cm² x4辺) to PMTs

FLa42 … ScYOR(5x20cm² x2辺)x2 to PMTs