千葉大学大学院理学研究科2014年度修士論文発表会

高汎用性しきい値型粒子識別装置の開発

Development of threshold type particle identification device with high versatility

粒子線物理学研究室 学籍番号:13SM2103 伊藤博士

Thanks for constructive feedback and support from Prof. Kawai and PPL members.

- 1 -

2014.06.02-04 TIPP'14 @ Amsterdam

ハドロン物理学

ハドロン・・・ クォークが構成する複合粒子 qq:メソン qqq:バリオン 「エキゾティック粒子の探索」

千葉大が参加しているプロジェクト

- J-PARC E03 \cdots Measurement of X Rays from Ξ^- Atom
- J-PARC E16 … カイラル対称性の回復と中間子の質量変化
- J-PARC E34 … 異常磁気能率g-2精密測定
- J-PARC E14,15 ···KOTO, $K_{\nu}^{0} \rightarrow \pi^{0} \nu \nu$ 事象によるCP-Violation
- T2K … ニュートリノ振動
- WLS Fiber とMPPCを用いた医療用PET検出器の開発
- ..

J-PARCにおけるハドロン物理

高汎用性しきい値型PID装置

	E36 TREK	FOREST	LEPS II	⁹⁰ Sr Counter
PID	e/	p/π	π/K	⁹⁰ Sr/ ¹³⁷ Cs
Moment(GeV/c)	0.23 – 0.24	1.0 – 2.0	1.5 – 2.4	
aerogel index	1.08	1.14	1.03	1.045
motivation	R _k 精密測定	エキゾティック粒子 N*(1670)	エキゾティック粒子Θ+	東日本大震災復興
Facility	J-PARC	東北大学電子光理学研究 センター	SPring-8	Chiba Univ.
Physics Run Start	2014 - 2015年度	2015年度~	2016?	2012~

LEPS II: Laser Electron Photon Experiment at SPring-8

大強度放射光施設SPring-8の航空写真

~ 3.5 eV

Max. 2.4 GeV

Laser Hutch

Experimental Hutch

SPring-8:

Laser

e

Compton Scattering

8 GeV -

8 GeV Electron

Interaction Region

◎「エキゾティック粒子 Θ⁺の探索」 2003: LEPSグループΘ⁺の世界初発見報告

CLASグループはO+確認できず → ホントにあるの?

新しい検出器で存在の有無を確認しよう! LEPS II 発足 2.22 m -RPC γ counter TOP 8 GeV electron storage ring 千葉大AC開発 什様 大面積·薄型 磁場中 OF BL33LEP TPC π/K 識別 DC @1 - 2 GeV/c 従来型では不可能 Detector

> LEPS II detector: M. Niiyama et al., Nucl. Phys. A 914 (2013) 543 - 552.

10 20m

シリカエアロゲル と エアロゲルチェレンコフカウンター(AC)

シリカエアロゲル

- SiO2と空気の配合で屈折率(1.003 1.26)
- ピンホール乾燥、高屈折率
- 疎水化処理 数十年劣化なし
- 千葉大特任研究員田端が製作:透明度高い 日本で唯一透明なゲルを製作する職人(千葉大卒)

$$p > \frac{m/n}{\sqrt{1 - (1/n)^2}} = \frac{m}{\sqrt{n^2 - 1}}$$

 $= p_{th}$

- 4 -

しきい値型AC

4. PMT磁場中動作困難

- 5 -

研究目的

LEPS II ACの開発 仕様: π/K識別 @1 -2 GeV/c 形状トロイダル型 狭い空間、薄型、強磁場中

研究方針:

高汎用性しきい値型PID装置

- 波長変換ファイバーを用いた方式

高汎用性しきい値型PID装置

- 波長変換ファイバーを用いた方式

波長変換ファイバー WLSF: Wavelength Shifting Fiber クラレ社

<u>波長変換ファイバー(WLSF)</u> … ファイバー側面から受光して両端に 伝搬する性質。 露出面が受光部に相当

トラッピング効率:波長変換された光の伝搬する割合

$$\varepsilon_{trap} = \frac{1}{4\pi} \int_0^{2\pi} d\varphi \int_0^{\theta_1} \sin\theta d\theta$$
$$\theta_1 = \cos^{-1} \left(\frac{n_2}{n_1}\right)$$

クラレ社のシングルクラッドとダブ ルクラッドのトラッピング効率比は 計算上、約1.7倍

Cross-section and Cladding Thickness

WLSFライトガイド集光システム

型番	ピーク吸収波長 [nm]	ピーク発光波長 [nm]
B-3(300)MJ	350	450
Y-11(300)MJ	440	470
O-2(300)MJ	540	550
R-3(300)MJ	570	610

Kuraray社 WLSF 直径0.2mm 4種類ファイバー

LEDを用いたWLSFシート性質評価測定

LEDを用いたWLSFシート性質評価測定

定義:

減衰長

… 光量が1/eになる長さ

曲げ損失最小半径 … 光量損失が1dB未満である最小半径

LEDによるWLSFシート性能評価測定結果

型番	減衰長 [mm]	曲げ損失最小半径 [mm]
B-3(300)MJ	1609 ± 1221	15.0
Y-11(300)MJ	995 ± 527	5.6
O-2(300)MJ	620 ± 96	16.7
R-3(300)MJ	1237 ± 526	6.8
SCSF-78MJ	1050 ± 357	26.1

セットアップ

直接PMTでチェレンコフ光Npeの観測

直接PMTでチェレンコフ光Npeの観測

WLSFライトガイドを経由したNpeの観測

WLSFライトガイドを経由したNpeの観測

Cosmic ray test:FLa19 vs. FLa20

ライトガイド(BYOR)の光電子数

	PMT1	PMT2	PMT3	PMT4	$_4C_1$ OR Logic
Gain	1.80E + 07	2.57E + 07	$3.55E{+}07$	$3.41E{+}07$	
efficiency	0.32 ± 0.01	0.28 ± 0.01	0.22 ± 0.01	0.19 ± 0.01	0.63 ± 0.03
mean num. of p.e.	0.38 ± 0.02	0.33 ± 0.02	0.24 ± 0.01	0.22 ± 0.01	0.98 ± 0.07

直径 0.2 mm の波長変換ファイバー シートを用いたライトガイドで初めて チェレンコフ光を観測した。

> 日本物理学会 2013 年度秋季大会 [22aSM-10]

ライトガイド(BYOR)の集光効率 / WLSF組み合わせ比較BYOR, BBYY

Cosmic ray test:FLa19 vs. FLa20

東北大ビームテスト setup

東北大ビームテスト 解析方法/エアロゲル厚さと光電子数

東北大ビームテスト PMT直接読出し/ライトガイド収集効率

Light Guide	aerogel: index/ thick.[mm]	det. eff.	mean number of p.e.	coll. eff.
BYOR	1.05/ 60	0.76 ± 0.02	1.43 ± 0.03	$8.1\pm0.2\%$
BBYY	1.05/ 60	0.68 ± 0.02	1.14 ± 0.03	$6.4\pm0.1\%$
BY	1.05/ 60	0.70 ± 0.02	1.19 ± 0.03	$6.7\pm0.1\%$
BBYY corting	1.05/ 60	0.76 ± 0.02	1.42 ± 0.03	$8.0\pm0.2\%$
BYOR(x2)	1.05/60	0.73 ± 0.01	01.31 ± 0.03	$7.4\pm0.1\%$
PMT direct	1.05/ 60	1.00 ± 0.00	17.71 ± 0.06	

※corting:シート製作時に受光面をPVAL接着剤を用いて 綺麗にまとめたもの。

結果

1. BYOR > BBYY

2. BBYY corting \sim BYOR

Coll. eff. \sim 8.1 ± 0.2%

~試作機の仕様~

有効面積: 120 x 100 mm

シリカエアロゲル

- 屈折率 1.05 厚さ 60 mm
- 凌调長 35 40 mm @405 nm

WLSFライトガイド

有効面積 60 x 100 mm (x2) WLSF組み合わせ BYOR U字型 PMT接続部 (x4)

反射板<字型

東北大ビームテスト 試作器の性能評価測定

<u>評価項目</u> 1. WLSF集光効率 2. 平均光電子数と検出効率 3. 入射位置一様性

4. チェレンコフ光検出時刻のゆらぎ

結果	
WLSF coll. Eff.	7.4 ± 0.1%
detection eff.	0.69 ± 0.03
mean num. p.e.	1.16 ± 0.09
position uniformity	93%
timing fructuation	0.3 ns

PoS(TIPP2014)325

ここまでの結果

試作器性能結果	
n=1.05	
π/K @1 – 1.5 GeV	/c
WLSF coll. Eff.	7.4 ± 0.1%
detection eff.	0.69 ± 0.03
mean num. p.e.	1.16 ± 0.09
position uniformity	93%
timing fructuation	0.3 ns

[ここまでの結論] 波長変換ファイバー方式は

- 装置面積におけるPMT設置空間を排除
- 減衰長を考慮して1デバイス当たり最大 PID面積 1 m²

入れ子方式

[考察] 識別能力: eff.~99%(Npe>4.6)のために aerogel (1.05) d=19 cmが必要

入れ子方式ではPID面積拡張における薄型 化が可能 ライトガイドの厚さ~1 mm未満 (例)PID面積100 x 120 mm →不感領域 2÷122 ~1.6%

- 23 -

高汎用性しきい値型PID装置の新たな設計

- MPPCを配列した方式

~仕様~

- ・エアロゲルの下流直後にMPPC2次元配列
- MPPC反応個数しきい値型PID
- 薄型:「エアロゲルの厚さが支配的」
- 任意形状
- 磁場中動作

MPPC[®]: Multi-pixel Photon Counter

浜松ホトニクス社製

MPPC特性

高い量子効率
 高い線形性
 低電圧
 早い時間特性
 磁場の影響を受けない
 低価格
 高雑音

- MPPCはガイガーモードAPDのピクセル 化

- APD … アバランシェ・フォトダイオード:逆 バイアスをかけて電子雪崩で増幅される..

- ガイガーモードAPD … 逆バイアス値が 高く飽和状態.

東北大ビームテスト setup

MPPC 1次元配列スキャニング

MPPC: S12572-100P eff. area: □3 mm Outside area: □4 mm Scanning acceptance 0.25

東北大ビームテスト analysis

MPPC平均検出光子数分布

mean num. of detection photon @12 mm

mean num. of detection photon @100 mm

今後の展望

粒子識別概念図

まとめ

ハドロン物理:エキゾティック粒子の探索

任意環境下におけるAC開発 - 薄型・大面積・任意形状・磁場中動作

WLSF方式PID装置開発研究 [実験]

- 1. LEDテスト:シート性質評価
- 2. 宇宙線を用いた性能評価測定
- 3. ELPHビームテストによる性能評価測定

[結論]

波長変換ファイバー方式では

- 装置サイズにおいてPMT設置空間の排除
- 減衰長を考慮して1デバイス当たり最大
 PID面積 1 m²

[<mark>課題]</mark> 奥行きについて改善が必要 WLSF方式の課題克服のため...

[展望]高汎用性しきい値型PID装置の新たな設計

- エアロゲルの下流直後にMPPC2次元配列
- MPPC反応個数しきい値型PID
- 薄型:「エアロゲルの厚さが支配的」
- 任意形状
- 磁場中動作

[実験] 1. ELPHビームテスト: MPPC1次元配列スキャン - ゲルあり/なしで明らかなチェレンコフ分布確認

Thank you ...

Backup

Index

- PMT Calibration
- LEDを用いたWLSF性能評価 Att. Length
- LEDを用いたWLSF性能評価 Bending Loss
- 宇宙線ミューオンのフラックス
- 試作機の性能評価測定
- LEPS/LEPS II
- 1次元スキャン測定:PID評価

光電子増倍管(PMT)のキャリブレーション

LEDを用いたWLSFシート性質評価測定 Att. Length

0.05597/2 20.74 ± 5.032

995.8 ± 526.6

1000

0.2353/2

29.28 ± 4.814

1237 ± 525.7

400

600

800 transfered length (mm)

101

10

Bending Diameter (mm)

$$-20log_{10}\left(\frac{y(x)}{y(100)}\right) < 1$$
 (6.5)

(6.4)

を満たすxを最小損失半径と計算した。

• 宇宙線ミューオンのフラックス

7.2.2 宇宙線ミューオンの鉛直流量

本測定で、ミュオーンのトリガーレートは $(3.0 \pm 0.2) \times 10^{-3} s^{-1}$ が得られた。トリガーシンチ の重なる面積は $5 \times 5 cm^2$ で立体角は 1.07 sr なので、得られた鉛直流量は $1.12 \pm 0.07 m^{-2} s^{-1} sr^{-1}$ である。これは §7.1 で示した全強度 $70m^{-2} s^{-1} sr^{-1}$ と比べて 1-2 桁少ない結果である。

今回の測定では実験室系つまり建物のコンクリートでエネルギー損失および、真鍮による遮蔽で 低エネルギー・ミューオンを除去したことが原因であろう。したがって、本測定で検出したミュー オンはエアロゲル通過時で高エネルギーで、安定したチェレンコフ放射による光子数の供給を裏付 けている。

count	time [hr]	count rate $[s^{-1}]$
224	23.5	2.88×10^{-3}
230	23.3	2.74×10^{-3}
296	25.8	3.19×10^{-3}
273	23.7	3.20×10^{-3}
273	24.6	3.08×10^{-3}
248	22.9	3.01×10^{-3}
	average	$3.0 imes 10^{-3}$
	st. dev.	$1.8 imes 10^{-4}$

表 7.1: トリガーレート

試作機の性能評価測定

LEPS/LEPS II

前方角度実験

中後方角度実験

東北大ビームテスト エアロゲル屈折率と光電子数

Primary test of fiber light guide

1. Cosmic ray test

Primary test of fiber light guide

1. Cosmic ray test

PMT direct reading Cherenkov test

