Development of γ-ray Detector using WLSF

伊藤博士 千葉大学 博士後期課程1年次 2016.01.26

Scintillation Detector Mechanism

Typical γ-ray Detector performance

Nucl. Instr. and Meth. A 471 (2001) 209–214

Over Spec γ-ray Detector performance

IEEE Trans. Nucl. Sci., vol. 61, pp. 1032-1038, 2014.

AX-PET by CERN group

J-PET from plastic scintillator

Physics Research A 775 (2015) 54–62

Using WLSF

第110回医学物理学会学術大会(2015) P-010. ANIMMA2015, #220.

What is WLSF?

Combination of GAGG & WLSF(R-3)

Setup

Setup

Event selection

WLSF collected photoelectrons

WLSF collected photoelectrons

relation of number of photoelectrons and layers

WLSF collected photoelectrons

Precise position measurement

Precise position measurement setup

WLSF (R-3)

effective area ... 10 x 10 mm² 1 mm width strip (x 10) 1 strip: 5 fibers

Precise position measurement Analysis

Precise position measurement Analysis

Reconstructed position

where *i* is channel number, x_i is channel position, Q_i is number of photoelectrons.

Precise position measurement Each reconstructed position

Incident position [mm]

Precise position measurement result

summary

- 1. WLSFを用いたガンマ線検出器は安価で高位置分解 能が可能
- 2. シンチの発光波長領域とWLSFの吸収波長領域が重なっていると可能
- 3. GAGG + R-3は読み出し可能: 収集効率約3%
- 4. WLSF 1 mm Strip で 位置分解能(x)~1.14 mm (σ)

Future Outlook

- 1. ²²Naからの1.27 MeVのノイズ除去
- 2. WLSF 1本ずつ(0.2 mm Strip)で読み出し

1.27 -detector energy distribution

2. WLSF 1本ずつ(0.2 mm Strip)で読み出し

1 mm Strip 読み出しで分解能 1.1 mmを達成

0.2 mm Strip 読み出しで分解能 0.2 mmを達成!?

γ-ray Detector

半導体検出器

シンチレーション検出器

http://www.pref.kanagawa.jp/cnt/p499367.html

γ-ray Detector

半導体検出器

エネルギー分解能 … 高い 検出効率 … 低い Ge:温度管理(-200℃) 大型 エネルギー分解能 … 低い 検出効率 … 高い 小型

Precise position measurement

Precise position measurement profile

