2016 IEEE NSS/MIC Strasbourg, France N08-22 29 Oct. - 5 Nov., 2016

Identification of ⁹⁰Sr and ⁴⁰K Based on Cherenkov Radiation at Lower Background Suppressed Cosmic Rays

H. Ito, A. Kobayashi, H. Kawai, S. Kodama, T. Mizuno, M. Tabata Graduate School of Science, Chiba University, 1-33, Yayoicho, Inage, Chiba, Japan

Introduction

The Great East Japan earthquake caused the accident of Fukushima Daiichi Nuclear Power Plant in March, 2011, as a result, radionuclides spread around Japan and Pacific Ocean. In particularly, fisheries of Fukushima Prefecture were damaged seriously. Recently, the fisheries have not restarted yet. One of the reasons is ⁹⁰Sr because it is more

Real time ⁹⁰Sr counter

Shielding Block (Aluminum)

Trigger Fiber Sheet (Scintillating Fibers)

dangerous by accumulating in the bone and difficult to measure concentration of contamination in fish or seafood.

A new detector, real-time ⁹⁰Sr counter, was developed using threshold type aerogel Cherenkov counter. The detector can measure radioactivity of ⁹⁰Sr in real time, because beta rays from ⁹⁰Y are identified in environmental radiation such as ⁴⁰K.

charged When velocity of particles is higher than light velocity in a material with refractive index of n, as shock waves, photons are emitted. The is Cherenkov phenomenon radiation.

Detection Mechanism

Aerogel Cherenkov Counter -Silica Aerogel (n=1.0411, TL=40.8mm@400nm) -Wavelength Shifting fibers (Y-11 + B-3 -Photomultiplier tubes (R9880U-210) -Effective area: 300 mm × 100 mm

Results

VETO counter (2 units)

- **Plastic scintillator**
- Wavelength Shifting fibers
- PMT: H11934-200
- $N_{pe} > 40$ p.e. in any position

The efficiencies at the center of the detector

	Trigger⊗	Trigger⊗	Trigger⊗	Trigger⊗
	$AC(M \ge 1) \otimes \overline{VETO}$	$AC(M \ge 2) \otimes \overline{VETO}$	\overline{VETO}	$AC(M \ge 2)$
N_{BG}/cph	454.14	132.57	24278.2	3030.79
$\eta_{ m Sr}/~ m Bq^{-1}s^{-1}$	5.06×10^{-3}	2.03×10^{-3}	2.58×10^{-1}	2.04×10^{-3}
$\eta_{ m Cs}/~{ m Bq^{-1}s^{-1}}$	2.81×10^{-5}	1.87×10^{-6}	6.86×10^{-2}	2.74×10^{-6}
$\eta_{ m K}/~{ m Bq^{-1}s^{-1}}$	8.36×10^{-5}	1.75×10^{-5}	1.36×10^{-1}	4.42×10^{-5}
$\eta_{\rm Sr}/\eta_{\rm Cs}$	180	1083	3.75	743.3
$\eta_{ m Sr}/\eta_{ m K}$	60.5	115.9	1.90	46.2
$A_{\rm Sr}^{min} {{\rm (fish)} \over {\rm wet}}$ / Bq kg ⁻¹	117.3	157.6	17.8	748.5
$A_{\rm Sr}^{min} \begin{pmatrix} {\rm fish} \\ {\rm dry} \end{pmatrix} / {\rm Bq \ kg^{-1}}$	35.3	47.4	5.97	224.7
$A_{\rm Sr}^{min} \left({{\rm water}\atop{ m dry}} \right) / {\rm Bq \ kg^{-1}}$	1.2	1.6	0.37	7.50

Position dependence

Logic signal	PMT channel number & logic signal
Trigger	$PMT1(Tr1) \cap PMT2(Tr2)$
$AC(M \ge n)$	$_{4}C_{n}$ in PMT3(AC1), PMT4(AC2), PMT5(AC3), PMT6(AC4)
VETO	$PMT7(VETO1) \cup PMT8(VETO2)$

Detection Limit (A_{Sr}^{min}) was defined

$$A_{\rm Sr}^{min} = \frac{3\sqrt{N_{BG} + (\eta_{\rm Cs}A_{\rm Cs}' + \eta_{\rm K}A_{\rm K}')\,m\varepsilon^{-1}T}}{\eta_{\rm Sr}\,m\varepsilon^{-1}T}$$

where η_x dnots an absolute efficiency of radionuclide ($x=^{90}$ Sr, 137 Cs, 40 K), N_{BG} is background rate at empty, m is sample weight (30 g), ε is compression ratio (wetted fish: 1, dried fish: 0.3, dried seawater: 0.01), T is measurement time of 3600 seconds, A'_x is radioactivity of the radionuclide x.

AC100V

Mean efficiencies

	$Trigger \otimes \\ AC(M \ge 1) \otimes \overline{VETO}$	$Trigger \otimes \\ AC(M \ge 2) \otimes \overline{VETO}$	Trigger⊗ <u>VETO</u>	$Trigger \otimes AC(M \ge 2)$		$Trigger \otimes \\ AC(M \ge 1) \otimes \overline{VETO}$	$Trigger \otimes \\ AC(M \ge 2) \otimes \overline{VETO}$	Trigger⊗ VETO	$Trigger \otimes \\ AC(M \ge 2)$
$\eta_{ m Sr}/~{ m Bq^{-1}s^{-1}}$	4.28×10^{-3}	1.68×10^{-3}	0.25	1.69×10^{-3}	$\eta_{ m Sr}/~ m Bq^{-1}s^{-1}$	$(4.87 \pm 0.06) \times 10^{-3}$	$(1.96 \pm 0.04) \times 10^{-3}$	0.257 ± 0.001	$(1.96\pm)\times10^{-3}$
$r_{\rm Sr}^{nin} \left({{\rm fish}\atop{\rm wet}} \right) / {\rm Bq \ kg^{-1}}$	138.6	190.6	18.3	905.0	χ^2/NDF	0.924/11	0.672/11	29.0/11	0.378/11
$\frac{min}{Sr}$ $\binom{fish}{dry}$ / Bq kg ⁻¹	41.7	57.3	6.15	271.6					
$\frac{din}{dry}$ / Bq kg ⁻¹	1.4	1.9	0.38	9.1					

Conclusion

A new detector, real-time ⁹⁰Sr counter, was developed using threshold type aerogel Cherenkov counter. As the result of performance estimation, the efficiency ratio was evaluated as $\eta_{Sr}/\eta_{CS} = 1083$, $\eta_{Sr}/\eta_{K} = 116$, source position dependence of the efficiencies as expected, and good response linearity. The detection efficiency was estimated as 1.9 Bq/kg (dried seawater) and 57.3 Bq/kg (dried fish).

Reference [1] H. Ito et al., PoS (TIPP2014) 242.

[2] M. Tabata and H. Kawai, JPS Conf. Proc. 8 (2015) 022004. [3] R. Pestotnik et al., Nucl. Instr. Meth. A 595 (2008) 278. [4] S. Iijima et al., in: 2013 IEEE NSS/ MIC NPO1-169 (2013).

Acknowledgments

This work was supported by JPS KAKENHI Grant number 25610049, a public offering research of Chubu of Electric Power Co., Inc. in 2013 by the Nuclear Safety Institute of Technology, a special program of the recovery support for the Great East Japan Earthquake in 2014, the New Technology Development Foundation and Venture Business Laboratory, Chiba University.