

Development of a Versatile Calibration Method for Electro-Magnetic Calorimeters Using a Stopped Cosmic-ray Beam

H. Ito¹, K. Horie², H. Kawai¹, S. Kodama¹, S. Shimizu² for the J-PARC TREK collaboration ¹Graduate School of Science, Chiba University, 1-33, Yayoicho, Inage, Chiba, Japan ²Graduate School of Science, Osaka University, 1-1, Machikaneyamacho, Toyonaka, Osaka, Japan

J-PARC E36 Experiment

Precise Measurement of $R_K = \Gamma(K^+ \to e^+ \nu_e) / \Gamma(K^+ \to \mu^+ \nu_\mu)$ using stopped positive kaons @ J-PARC K1.1BR

 $R_{K}^{SM} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta_{\gamma}\right)$

Experimental setup

Setup

The Gap veto counter was used as the trigger counters for cosmic-ray muons. Flash ADC Typical Waveform

Muon passage

Background: $K^+ \rightarrow e^+ \nu_e \gamma$ (SD)

- 768 CsI(TI) crystal modules
- 18 x 18 (28 x 28) mm² PIN diode
- Pre-amplifier + Shaping amplifier

Waveform analysis

• Flash ADC VF48 (25 MHz)

Calibration using Cosmic Rays

CsI crystals

In this study, a new calibration method for EM-calorimeters was

Analysis

- The expected spectra of absolute energy, E_{e^+} and E_{e^-} , were calculated with a MC simulation assuming uniform muon stopping in a crystal (blue and red lines, respectively).
- The experimental data (black dots) were fitted to these simulated spectra by adjusting the energy gain factor (horizontal scale), mainly using the e⁺ region between 20 - 40 MeV. The magenta dotted line is the fitted line.
- A good fit was obtained with $\chi^2/NDF = 18.85/19$. The end-point energy of 53.2 \pm 3.2 MeV was determined.
- Right figure shows the time difference distribution between the first and second pulses under the conditions of $20 < E_{e^+} < 80$ MeV (closed circles) and $20 < E_{e^+} < 40$ MeV (open circles). Using μ^+ dominant events selected by $20 < E_{e^+} < 40$ MeV, the exponential decay constant was determined as $\tau = 2.10 \pm 0.04 \,\mu s$, which is consistent with the known μ^+ life time.

This method is applicable to various calorimeters, and it has been adopted by

the J-PARC E36 experiment.

1.4 m

- Enable for versatile EM-calorimeter
- 53 MeV interpolating gap of 1-100 MeV