

PROPOSAL FOR THE GAMMA RAY POSITION MEASURING SYSTEM USING e⁺/e⁻ PAIR PRODUCTION EVENTS

Shota KIMURA, Yusaku EMOTO, Kento FUJIHARA, Hiroshi ITO, Naomi KANEKO, Hideyuki KAWAI, Atsushi KOBAYASHI, and Takahiro MIZUNO Dept. of Physics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, JAPAN

Entries Mean Std De

20-100 MeV

Carbon beam

8.6

8.888

1e-85 -8.P

Introduction

- How is the energy and angular dependence of gamma rays generated when a particle beam is applied to the human body?
- Can we observe such gamma rays in high resolution?

Simulation

• Simulated on GEANT4, Monte Carlo simulation code.

Photon Cross Section

- Over 20 MeV gamma rays Pair production in the detector
- The e^{+}/e^{-} pair goes in the travelling direction of the gamma ray.

Using pair production event is the best way to detect high energy gamma rays

Method

Constitution of the new system

20 layers of detectors scintillator block beam monitor

Simulation

Shot 10-100 MeV gamma rays to the system *WLSF sheets are simplified as polystyrene boards

20 Me\

CHIBA UNIVERSITY

Entries 10352 Mean 1.177 PMS 0.4355

Entries Mean RMS 28103 1.823 1.157

- Counting the number of

Conclusion

This system has a possibility to measure gamma rays' position in high resolution.

References

[1] Berger M J; Hubbell J H; Seltzer S M; Chang J; Coursey J S; Sukumar R; Zucker D S; Olsen K: NIST XCOM: Photon Cross Section Database http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (retrieved on the 1st of December 2016)

Experiments

- photoelectrons. The setup of experiment
- On going