DEVELOPMENT OF GAMMA-DETECTORS FOR PET WITH POSITION RESOLUTION OF 0.5MM

YEMOTO, K FUJIHARA, H ITO, N KANEKO, H KAWAI, S KIMURA, A KOBAYASHI, AND T MIZUNO

GRADUATE SCHOOL & FACULTY OF SCIENCE, CHIBA UNIVERSITY, JAPAN



A0428

Basic method to improve the position resolution of PET

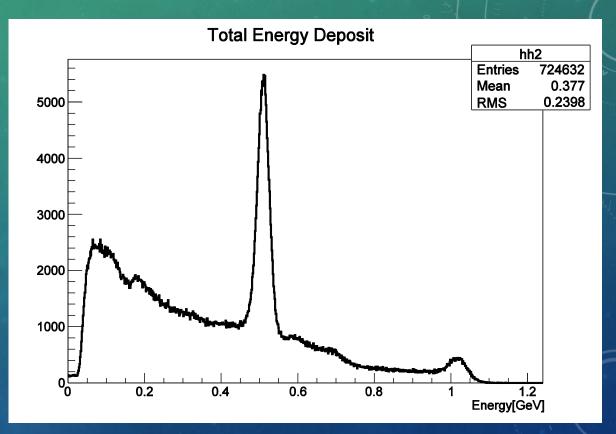
- In the Positron Emission tomography (PET), positrons and electrons annihilate and pairs of gamma-rays are created. These gamma-rays are caught by the scintillators of the detectors.
- In order to improve the position resolution of PET, scintillation crystals have to be subdivided into small pieces.
- But, the smaller the crystals are made, the more difficult it becomes to ignore the effect of Compton scattering.

- In the PET detectors, Compton scattering typically occur 1~6 times by one annihilation event. (3~8 electrons are scattered including photoelectric absorption)
- It is important to detect where the first scattering position is. (I'll come back to that point later.)

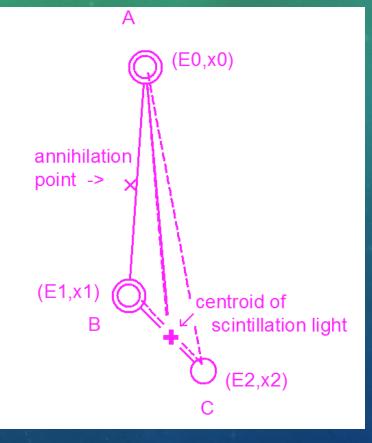
Structure of the detectors

- plate-like GAGG scintillators (34 mm × 34 mm × thickness of 3 mm)
 GAGG scintillator • Gd₃ Al₂ Ga₃ O₁₂ (Ce)
- Position detection of scattering

 \rightarrow WLS fibers (top and bottom surfaces of the scintillators, 0.2 mm in diameter)


(WLS fiber ••• wavelength shifting fiber)

Detection of energy deposit


→SiPM modules (lateral side of the scintillators, 3 mm × 3 mm)
 (SiPM • • • Silicon Photomultiplier ※not drawn in this picture)

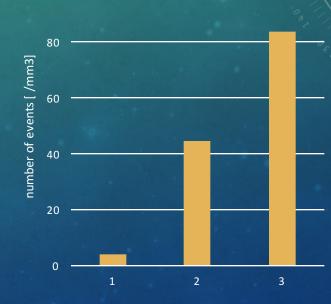
Energy deposit in the detectors

- In approximately 4% of the whole e⁺•e⁻ annihilation events, the two gamma rays directly come into the detectors without being scattered in the patients' bodies.
- Even if the total energy deposit is high, there remains the possibility of Compton scattering in the detectors.

Analysis for Compton scattering events

• Example : when the Compton scattering occurred one time

 \angle ABC and \angle ACB are compared with the energy deposit EO, E1 and E2 and then it is determined which is the first scattering point, B or C.


Conventionally, the centroid has been used as the data. It's off the correct position.

Analysis for Compton scattering events

• As a result of the simulation, in approximately 73% of Compton scattering events, the first scattering positions are correctly determined by calculating the energy discrepancy.

The number of events for cancer detection

- 1: Only photoelectric absorption events
- 2,3: number of events in which first scattering positions are correctly (less than 0.1 mm error) determined
- 2: by estimation of the centroid of scintillation lights
- 3: by calculating the energy discrepancy

100

Conclusion

- If Compton scattering events are used as data for PET analysis, the data quantity is <u>more than</u> <u>ten times</u> as many as that of photoelectric absorption events.
- If the energy discrepancy is calculated using the data of SiPM, the position accuracy improves compared with using the centroid of scintillation lights.

Thank you for listening!