

Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering

Kento FUJIHARA, Yusaku EMOTO, Hiroshi ITO, Naomi KANEKO, Hideyuki KAWAI, Shota KIMURA, Atsushi KOBAYASHI, and Takahiro MIZUNO Graduate School of Science, Chiba University, Chiba, JAPAN

Abstract — The detector with high-growth-rate (HGR) La-GPS and wave-length sifting fiber (WLSF) has sufficient ability for PET in spite of its lower cost. Energy resolution is 31.4%, and position resolution is 1.04 mm. In simulation, our system with parameters from experiment can identify 3 mm cancer.

Introduction

- In scintillator, Compton scattering occur 4 times as much as photoelectric absorption with 0.511 MeV gamma-ray_[1]
- Compton scattering makes PET's images unclear.

<u>Identifying scattering events</u>

Simulation (GEANT4)

	Parameter
	Radioactivity concentration (normal tissue)
	Radioactivity concentration (cancer)
	Width resolution
	Depth resolution
	Energy resolution

lution	31.4% (FWHM)
Ition	no error

Our detector

Layers of Plate-like HGR La-GPS and WLSF ·HGR La-GPS Lower cost (about one-fifth the cost of normal crystals)

> Left : Normal-crystal $(1 \text{ cm} \times 1 \text{ cm})$ Right : HGR crystal $(2 \text{ cm} \times 2 \text{ cm})$

Measuring Z-component and identifying scattering event ·WLSF

Measuring X- (top surface), Y- (bottom) surface) component and energy deposit

Identifying and analysis method

Signals from plural layers

- \rightarrow Considering as a scattering event
- \rightarrow Regarding the nearest point to the body as the first emission point

Time resolu

Quantity

2 Mbq/kg

10 Mbq/kq

1 mm

1 mm

Setting

• Positron energy : ¹⁸F decay energy • Detector : 1 mm thickness La-GPS × 24 layers × 6 detectors Cancer area : 3 mm × 3 mm × 3 mm cube, center of human • Energy threshold : 430 – 590 keV

Reconstructing method

①Measuring 430 - 590 keV in 2 detectors ②Analyzing first emission points (scattering event : adopting nearest point to the body) ③Calculating positron decay point by the method in left figure

 $time_1 pos_2 + time_2 pos_1$ pos_{decay} $time_1 + time_2$ ④Filling decay point in histogram (bin-size : 1 mm)

PET Reconstruction z=0

• Layers

Result

Background level : 25.4 (σ =5.04) Cancer level : 17.1

Counts in cancer area are more than 2σ in background.

Discussion and conclusion

Xaxis

· Our prototype detector, including plate-like HGR La-GPS and WLSF sheets, has 31.4% energy resolution and 1.04 mm position

 $89.2 \pm 11.9 (\sigma)$ (double-faces, double-ends) Energy resolution : 31.4% (FWHM) cf. p.e. in 511-keV with normal crystal : 17.8

(HGR, single-face, single-end)

Exp. 2. Analysis method Centroid method with all SiPMs' output Reconstructing formula :

result Position resolution : 1.04 mm (FWHM) resolution. In GEANT4 simulation, it is confirmed that these parameters are sufficient for identifying 3 mm cancer.

• Setup of exp. 2. has a problem about the width of 511-keV gamma rays from ²²Na source. Positrons from ²²Na is spread out in acrylic part of source. This is an critical issue.

Reference

[1] Berger M J; Hubbell J H; Seltzer S M; Chang J; Coursey J S; Sukumar R; Zucker D S; Olsen K: NIST XCOM: Photon Cross Section Database http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (retrieved on the 8th of May 2017)

Acknowledgement

We would like to thank C&A corp. for providing La-GPS scintillators.