INTERNATIONAL CONFERENCE on ADVANCEMENTS in NUCLEAR INSTRUMENTATION MEASUREMENT METHODS and their APPLICATIONS (ANIMMA 2017) PALAIS DES CONGRES, LIEGE, BELGIUM, 19-23, June, 2017

Measuring Radioactivity of ⁹⁰Sr based on Cherenkov Radiation in Real Time

Hiroshi Ito, Yusaku Emoto, Kento Fujihara, Hideyuki Kawai, Shota Kimura, Satoshi Kodama, Takahiro Mizuno, and Makoto Tabata Graduate School of Science, Chiba University, Chiba, Japan

Abstract — The inspection of ⁹⁰Sr concentration for a sample in real time (or rapidly) is focused by a recent study. We are developing a detector to measure the radioactivity concentration of ⁹⁰Sr in a sample based on Cherenkov light using silica aerogel. The detector performance was estimated by using radiative sources.

Introduction

- In March, 2011, A Nuclear Accident of the Fukushima Daiichi Nuclear Plant occurred ^[1].
- It is difficult to inspect the ⁹⁰Sr contamination of raw-fresh foods sample for the chemical extraction method in conventional because it takes a few weeks – about month to measure ^[2].

Signal Model Development

Detector background model $\Gamma_{BG}(n)$ and the signal model $\phi_{\chi}(n)$ without background and the signal model $\Gamma_{\rm x}(n)$ with the background were developed based on experimental data given as

- The inspection of ⁹⁰Sr concentration for sample in real time (or rapidly) is focused by a recent study ^[3].
- We have been developing a detector to measure the radioactivity concentration of ⁹⁰Sr in sample based on Cherenkov light using silica aerogel^[4-6].
- The study presents the detector signal model development and the suppression of environmental radiation by external shielding.

$$\Gamma_{\rm BG}(n) = \frac{1}{\sqrt{2\pi\sigma_{\rm BG}^2}} \exp\left(-\frac{(n-\nu_{\rm BG})^2}{2\sigma_{\rm BG}^2}\right), \qquad \phi_x(n) = \frac{e^{-\nu/\alpha^2}(\nu/\alpha^2)^{n/\alpha^2}}{\Gamma(n/\alpha^2+1)}$$
$$\Gamma_x(n) = \int d\tilde{n} \ \phi_x(\tilde{n}) \cdot \Gamma_{\rm BG}(\tilde{n}-n),$$

where *n* is the number of counting rate, $\nu = kA, A$ is radioactive intensity, k is the coefficient (Bq⁻¹ h⁻¹), and $\Gamma(n)$ is the Gamma function.

Source	α	k
90 Sr	2.50 ± 0.50	$(6.23 \pm 0.13) \text{ Bq}^{-1} \text{ h}^{-1}$
^{137}Cs	0.532 ± 0.044	$(4.77 \pm 0.09) \times 10^{-3} \text{ Bq}^{-1} \text{ h}^{-1}$
$^{40}\mathrm{K}$	1.067 ± 0.106	$(1.95 \pm 0.04) \times 10^{-2} \text{ Bq}^{-1} \text{ h}^{-1}$

Efficiency

γ rays (E>2 MeV) from ²¹⁴Bi, ⁴⁰K, ²⁰⁸Tl in concrete of the building \bullet ceiling were observed by BGO γ energy spectra.

Source	Efficiency	Minimum Radioactivity		
		1σ	2σ	3σ
90 Sr	50%	1.4 Bq	3.0 Bq	4.6 Bq
	90%	$5.4 \mathrm{Bq}$	$7.6 \mathrm{Bq}$	$9.6 \mathrm{Bq}$
$^{-137}\mathrm{Cs}$	50%	1.3 kBq	$2.5 \mathrm{kBq}$	3.8 kBq
	90%	3.1 kBq	$4.5 \mathrm{kBq}$	$5.8 \mathrm{kBq}$
$^{40}\mathrm{K}$	50%	0.32 kBq	0.65 kBq	0.94 kBq
	90%	0.80 kBq	1.12 kBq	1.44 kBq

⁹⁰Sr radioactivity (Bq)

Lower Limit Estimation

Conclusion

- The detector was shield externally by lead and brass blocks.
- By shielding external of the detector, the background rate was reduced to $35 \pm 6 h^{-1}$ from $125 \pm 9 h^{-1}$.
- Neutral cosmic rays (y shower of neutrons) with continuous energy cannot be suppress completely by external shielding.

Shielding external of the detector

In a case of threshold set to 3σ • $A_{Sr}^{50\%}/S = 0.0153 \text{ Bq/cm}^2$ at *T*=1 h, *S* =300 cm² $A_{\rm Sr}^{50\%}\varepsilon/m = 46 \, {\rm Bq/kg}$ for dried seafood sample $\varepsilon = 0.3, \ m = 30 \ g$ *T*=1 h, *S* =300 cm²

- BG was suppressed by external shielding.
- Signal model to reproduce the data was developed.
- Contamination Limit of foods is defined as 100 Bq/kg by Ministry of Health, Labour and Welfare, Japan.
- Detector performance meets the requirement.
- [1] K. Hirose, J. Environ. Rad. 157 (2016) 113. Reference [2] C. Testa et al., J. Radio. Nucl. Chem., 229 (1) 19 (1998) 23. [3] H. Hirayama, et al., Trans. Atom. Ener. Soc. Jp., 14 (3) (2015) 141. [4] H. Ito, et al., JPS Conf. Proc. (2016) 070002. [5] S. Ijima, et al., IEEE NSS MIC Conf. Reco. (2014) N09-40. [6] S. Iijima, et al., IEEE NSS MIC Conf. Rec. (2013) NPO1-169 [7] M. Tabata, et.al., Nucl. Instr. Meth. A 668 (2012) 64.