日本学物理学会2017年秋季大会 会 期:2017年9月12日(火)~15日(金) 場 所:宇都宮大学(峰キャンパス)

12aU11-3

J-PARC E36実験のための背景事象 $K^+ \rightarrow e^+ \nu_e \gamma$ の研究

伊藤博士^{1,*}), 堀江圭都²⁾, 五十嵐洋一³⁾, 今里純³⁾, 河合秀幸¹⁾, 清水俊²⁾, for the TREK-E36 Collaboration

1)千葉大学

2)大阪大学

1

3)高エネルギー加速器研究機構

$\text{Ke}2\gamma \ (K^+ \rightarrow e^+ \nu_e \gamma)$ Radiative Decay

Subtraction of structure dependent $K_{I2\gamma}$

1事象における波形情報

波形解析

波形模型の改良

CsI(TI)カロリメーター・エネルギー較正

 $K_{\mu 2}(K^+ \rightarrow \mu^+ \nu_{\mu})$: Kinetic energy 153 MeV peak for stopped muon

2017/9/12

 $K_{e2\gamma}$ 事象解析

100 run analysis

まとめ

- R_K測定においてRadiative decayは大きなBG。SD事象のγ 抜け落ち事象を評価するためにBG studyは重要。
- CsI(TI)カロリメータの波形模型を改良し、立ち上がりの合い を向上した。
- 新波形模型を用いてCsI(TI)カロリメータのエネルギー較正 を行なった。ターゲットにおけるエネルギー損失を補正して CsI(TI)のエネルギー分解能を評価した。σ_E = 2.6%
- *K*_{π2}観測結果からCsI(TI)カロリメータの機能を実証。
- *K_{e2γ}の実験データとモンテカルロシミュレーション*計算を比 較し、矛盾しない結果が得られた。
- 今後、解析統計量を増やし、Form Factorを決定しE36実験
 系におけるBGの評価を行なっていく。