

Performance Evaluation of A Prototype PET Detector With High-Growth-Rate Scintillator and Wavelength-Shifting Fibers

Kento FUJIHARA¹, Yusaku EMOTO¹, Hiroshi ITO¹, Hideyuki KAWAI¹, Shota KIMURA¹, Hiroyoshi Matsunaga², Atsushi KOBAYASHI¹,

Takahiro MIZUNO¹, Taichi NAKAMURA¹, Taiki TANAKA², and Takamichi YUZAWA²

(1) Graduate School of Science, Chiba University, Chiba, JAPAN

(2) Faculty of Science, Chiba University, Japan

Contact us freely!

Simulation method and results Introduction Cross section of photon and La-GPS • In scintillator, Compton scattering occur 4 times Total Attenuation with Coherent Scattering **Reconstructing method** toelectric Absorptio as much as photoelectric absorption coherent Scattering ①Measuring 71.5 p.e. – 86.9 p.e. with 0.511-MeV gammaray^[1] Emission point1, time1 Compton scattering makes PET's images in 2 detectors unclear. 2 Analyzing first emission points (scattering event : adopting nearest 0.0 point to the body) Positron ③Calculating positron decay point by the decay point **Identifying scattering events in** method in left figure 0.000 <u>scintillator is important for PET.</u> *time*₁*pos*₂*+time*₂*pos*₁ Emission point2, time2 0.1 0.01 pos_{decav} = Photon Energy (MeV) L1 : L2 = Time1 : Time2 **Our detector** Photon cross section in scintillator ④Filling decay point in histogram Layers of Plate-like HGR La-GPS and WLSF φ0.2mm WLSF sheet (bin-size : 1 mm) -HGR La-GPS^[2] ($[Ce_{0.01}La_{0.24}Gd_{0.75}]_2Si_2O_7$)

Lower cost (about one-fifth the cost of normal crystals)

Layers

Measuring Z-component and identifying scattering event • WLSF^[3]

Measuring X- (top surface), Y- (bottom surface) component and energy deposit

Identifying and analysis method

2 inch

PMT

(PMT1)

×1 mm)

Signals from plural layers

- \rightarrow Considering as a scattering event
- \rightarrow Regarding the nearest point to the body as the first emission point

①Center of human Background level : 28.2 (σ =5.31) Cancer level : 22.2

*time*₁ +*time*₂

Counts in cancer area are more than 3σ in background.

Simulation geometry and parameters

Parameter	Quantity
Padioactivity concentration	

Discussion and conclusion

• The detector performance (32.3% energy resolution and 1.04 mm position resolution) are sufficient to identify almost all 3 mm cancer;

(normal tissue)	2 MBq/kg	
Radioactivity concentration (cancer)	10 MBq/kg	
Width resolution	1 mm	
Depth resolution	1 mm	
Energy resolution	32.3% (FWHM)	
Time resolution	No error	

•Human phantom :

– Including 12 ribs, a spine and a pelvis (They have no emission of positron) • Positron energy : ¹⁸F decay energy • Detector : 1 mm thickness La-GPS × 24 layers × 6 detectors •Cancer area : 3 mm × 3 mm × 3 mm cube Position : ①Center of human ⁽²⁾Beside spine •Threshold : 71.5 p.e. – 86.9 p.e.

however, cancer on bones have a possibility of missing.

• The surface of bones is hazy. This problem seems to proceed from wide energy threshold. It appears that higher growth rate scintillator can emit more photoelectrons, and improve energy resolution.

Reference

[1] Berger M J, et al. : NIST XCOM: Photon Cross Section Database http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html (retrieved on the 18th of October 2017) [2] C&A Corporation La-GPS(Ce) Product information http://www.c-and-a.jp/GPS.html (retrieved on the 20th of October 2017) [3] kuraray Wavelength Shifting Fibers catalog http://kuraraypsf.jp/psf/ws.html (retrieved on the 20th of October 2017) [4] K. Fujihara et al., "Evaluation of Position Resolution for a Prototype Whole-Body PET Detector Based on Suppressing Backgrounds by Compton Scattering", ANIMMA 2017

Acknowledgement

We would like to thank C&A corp. for providing La-GPS scintillators.