- 現在までの研究状況(図表を含めてもよいので、わかりやすく記述してください。様式の変更・追加は不可(以下同様))
 これまでの研究の背景、問題点、解決方策、研究目的、研究方法、特色と独創的な点について当該分野の重要文献を挙げて記述してください。
 - ② 申請者のこれまでの研究経過及び得られた結果について整理し、①で記載したことと関連づけて説明してください。その際、博士課程在 学中の研究内容が分かるように記載してください。申請内容ファイルの「4.研究業績」欄に記載した論文、学会発表等を引用する場合に は、同欄の番号を記載するとともに、申請者が担当した部分を明らかにして記述してください。

① <u>背景・従来測定の問題点</u>:福島原発事故¹⁾後、福島県沖漁業が未だ再開されていない原因の一つは、鮮魚のストロンチウム 90(90 Sr)濃度を短時間で測定する方法を確立できていないことである。現在の技術では、食品に含まれる 90 Sr の放射能濃度測定は化学的抽出法によって数週間から1か月ほど要してしまう 20 。 本研究では短時間(1時間程度)で 90 Sr 濃度 50 Bq/kg の検出限界を達成することを目標にする。 90 Sr と 90 Y は放射平衡状態であるため、 90 Y が放出する最大 2.28 MeV の β 線を測定することで間接的に 90 Sr の放射能を測定出来る。幾つかの 90 Sr(90 Y)からの β 線を測定する試みはあるが、 90 Sr 濃度測定の実用に至っていない。これは、 β 線は連続的なエネルギーを持つためカロリメータや磁気スペクトロメータにおけるエンドポイント分析法において、自然放射能や宇宙線が有害な背景事象となるため困難である。最近の β 線飛程測定法では、水中の 90 Sr 放射能濃度は 10 分間で数 Bq/g が検出限界(1時間で 500-1,000 Bq/kg 相当)と報告されている 3,4 。

<u>解決方策</u>: 以上の問題点を克服するために、**試料に含 まれる**⁹⁰Y からのβ線だけに感度を持つ「しきい値型チ ェレンコフ検出器」を開発した(下図)。チェレンコフ放 射は「光の衝撃波」で荷電粒子の速度が物質中の光速 を超えたときに発光する現象である。本研究の本質的 な狙いは、背景雑音である⁴⁰K から放射されるβ線がチ ェレンコフ光を発生させない屈折率 1.041 のシリカエ アロゲル⁵¹を導入したことである。ところで、直接チ ェレンコフ光を読出す方法では、γ線と光電子増倍管 (PMT)の入射窓もしくは光電面との相互作用によっ

て雑音が生成される問題点がある。その為、本研究では比較的物質量の少ない波長変換ファイバーを導入 し、チェレンコフ光を集光した。更に、そのチェレンコフ光を吸収波長が異なる2種類の波長変換ファイ バーで観測する新しい技術を考案し、光収集効率が大幅に向上できた。実験装置は、このチェレンコフ検 出器をトリガー検出器と宇宙線除去検出器で挟むことで構成される。⁹⁰Υからのβ線だけに感度があるた め、この装置は試料内の⁹⁰Sr 放射能濃度を直接測定している。

研究方法:上述の仕様で試作器を製作し、性能の確認と共に問題点を明らかにすることから研究を開始した。その結果、線源を入れていない時の背景頻度が 190±5 h⁻¹で、⁹⁰Sr と ⁴⁰K からのβ線に対する感度比は約 40 倍、乾燥試料の ⁹⁰Sr 放射能濃度の検出限界は海産物で 52±10 Bq/kg,海水で 1.7±0.3 Bq/L と評価された^[2]。一方、主な背景雑音は角度を持って入射する宇宙線とコンクリートに含まれる自然放射能(²¹⁴Bi, ²⁰⁸Tl など)による数 MeV のγ線であることを突き止めた。そのため、プラスチックシンチレータをチェレンコフ検出器の上部だけでなく側面にも配置して、どの角度から入射する宇宙線も除去した。更に、鉛と真鍮によって装置外部を遮蔽することで自然放射能によるγ線を抑制した。

<u>特色と独創的な点</u>: 閾値型チェレンコフ検出器を用いたことで、⁹⁰Sr の放射能濃度を測定する上で強烈な 背景雑音である⁴⁰K からのβ線を抑制することが出来ることが他検出法と比べて独創的である。

② 研究経過: 右図に試作機に改良を加えた実機装置の俯瞰図を示す。波長変換ファイバーは B-3(吸収波長 320 nm)と Y-11(吸収波長 450 nm)をそれぞれ1種類ずつ使用した場合と比較して、2種類併用するとチェレ

ンコフ光の収集効率は約1.5 倍増加した。これは、吸 収領域が拡張されたことに加え、B-3 で再発光してフ ァイバー末端へ伝搬されなかった光をY-11 で再吸収 するため、PMT で読出す光量が増えたと考えられる。 したがって、本研究では2種類のファイバーを層構 造で使用した。チェレンコフ検出器の波長変換ファ イバーの両端に PMT が接続され、偶発雑音を抑制す るために両端 PMT の同時計測を行った。以上の方法 を用いて⁹⁰Y からのβ線が放出するチェレンコフ光 だけを効果的な観測に成功した。

(現在までの研究状況の続き)

また、宇宙線除去装置はチェレンコフ検出器の上部と 4 側面に設置され、任意角度方向から飛来する宇宙 線に対して 99.9%以上の検出効率(40-60 p.e.)を持つ^[18]。

更に、BGO 結晶を用いたγ線スペクトラム測定によって他の背景雑音を調査した結果、コンクリートに含 まれる²¹⁴Biと²⁰⁸Tlから放射される2 MeV 以上のγ線が問題になることを突き止めた。そこで実機では鉛 と真鍮を組み合わせて装置の周りを遮蔽することで背景雑音を 34.9±5.6 h⁻¹(試作機では 190±5 h⁻¹) まで 減少させた。なお、宇宙線γ線シャワーによる背景雑音は原理的に除去不可能で、その背景頻度は約35h⁻¹ である。

結果: 右図は⁹⁰Srの放射能強度を 0-250 kBq の範囲で 変えた時の実機装置の計数頻度を示す。その結果、良 好な応答線形性が観測され、設計通りの検出器性能が 得られた。この傾きは⁹⁰Sr の絶対感度を示し、(1.79 ± 0.04) × 10⁻³ Bq⁻¹ s⁻¹と評価できた。ここで、検出限界は 以下で表せる。

$$A_{\min}^{\rm Sr} = \frac{3\sqrt{N_{\rm BG} + (\eta_{\rm Cs}A_{\rm Cs}' + \eta_{\rm K}A_{\rm K}')m\varepsilon^{-1}T}}{\eta_{\rm Sr}m\varepsilon^{-1}T}$$

N_{BC}は背景頻度、ηは核種⁹⁰Sr,¹³⁷Cs,⁴⁰K に対する絶対感 度,mは乾燥試料の質量、εは乾燥による体積圧縮率、T は測定時間 3,600 秒を示す。この装置の有効面積 300 ×

100 mm²において、1時間の測定における検出限界は海産物で43±20 Bq/kg、海水で1.5±0.7 Bq/L であり、 本研究の目標を達成した。

J-PARC E36 実験⁶は、静止 K⁺中間子を用いてセミレプトニッ ク2体崩壊の分岐比を精密に測定することで、レプトン普遍性 破れを探索している。申請者は在学中に検出器開発から本研究 に携わり、CsI(TI)電磁カロリメータの波形模型とパイルアップ <u>補正アルゴリズムの開発を主に担当した。</u>Flash ADC によって 得られた典型的な波形データとフィティング関数を右図に示 す。エネルギー測定と時間測定に特化した2種類の波形模型を 開発し、エネルギー分解能 2.5%(o)と時間分解能 8.5 ns (o) (下 図)が達成された^[16]。これは E36 実験を遂行する上で十分な性 能である。

また、全768個のCsI(Tl)モジュールのエネルギー較正は、静止 K^+ から放射される単色運動エネルギー153 MeV の μ^+ ($K^+ \rightarrow$ $\mu^+\nu_{\mu}$)を用いて実施された。更に、宇宙線 μ^+ を CsI(TI)結晶内 で静止させ、2.2 µs の寿命で放射される最大エネルギー53 MeV の e^+ を観測した。この事象 $\mu^+ \rightarrow e^+ \nu_e \overline{\nu_\mu}$ における e^+ のエンドポ イントを用いて、加速器を使用しないエネルギー較正測定法が 確立されたと言える[8]。

更に、検出器アクセプタンスを評価するために、検出器模型を 実装した GEANT4 モンテカルロシミュレーションを用いて実 験データの再現性を確認した。これには精密な検出配置、アル ミ等の補助具の導入、物理過程模型が実装されている。詳細は 次項に示す。

参考文献:¹⁾ K. Hirose, J. Env. Rad. 157 (2016) 113.²⁾ C. Testa et al., J. Radio. Nucl. Chem. 229, 1, 23, 1998. 3) 平山英夫 et al., 日本原 子力学会和文論文誌, 14 (3), 2015.⁴⁾ H. Hirayama and K. Kondo, Jpn. J. Health Phys., 50 (4), 241-248 (2015). ⁵⁾ M. Tabata, et al., NIM A 668, 64, 2012.⁶ S. Strauch, et al., PoS(KAON13)014. ** [2], [8], [9], [16], [18]は4.研究業績リストを参照

申請者登録名

450 400 350 S 300 頻度(250 200 150 100 50 200

⁹⁰Sr線源強度(kBg)

伊藤 博士

3. これからの研究計画

研究の背景

2. で述べた研究状況を踏まえ、これからの研究計画の背景、問題点、解決すべき点、着想に至った経緯等について参考文献を挙げて 記入してください。

<u>背景</u>:素粒子標準模型ではレプトン(e, μ, τ)の弱い相互作用結合定 数は種類によらず一定であると仮定されている(レプトン普遍性)。 しかし、最近の BaBar, Belle, LHCb 実験において $R(D^*) = \mathcal{B}(\overline{B^0} \rightarrow D^{*+}\tau^-\overline{v_{\tau}})/\mathcal{B}(\overline{B^0} \rightarrow D^{*+}\mu^-\overline{v_{\mu}})$, $R(D) = \mathcal{B}(\overline{B^0} \rightarrow D^+\tau^-\overline{v_{\tau}})/\mathcal{B}(\overline{B^0} \rightarrow D^+\mu^-\overline{v_{\mu}})$ が観測され、右図の $R(D^*)-R(D)$ の相対関係において平均 値が標準模型から 4 σ の統計的差異が見つかった ⁷⁻⁹。また、 $R_K = \mathcal{B}(B^+ \rightarrow K^+\mu^+\mu^-)/\mathcal{B}(B^+ \rightarrow K^+e^+e^-)$ も標準模型の 2.6 σ の統計的差 異が報告されている¹⁰。

一方、K中間子を用いたレプトン普遍性破れ探索実験も世界中の研究所で実施されてきた。 K^+ のセミレプトニック 2 体崩壊幅の比 $R_K = \Gamma(K^+ \rightarrow e^+ v_e)/\Gamma(K^+ \rightarrow \mu^+ v_\mu)$ は標準模型において $R_K = 2.477 \times 10^{-5}$ と決定され、実験との不一致はレプトン普遍性の破れを意味する。最も高精度な実験は CERN NA62 で、標準

模型から 1.4 σ の統計的差異が報告されている ¹⁰⁾。

<u>問題点:</u> KLOE, NA62 では K⁺の飛行中崩壊を用いている^{11,12)}ため π⁰を伴った 3 体崩壊の背景雑音を多く含む。 <u>解決すべき点:</u> 静止 K⁺を使用することで、2 体崩壊事象は単色エ ネルギーのレプトンを持ち、背景雑音との分離が容易になる。 <u>着想に至った経緯:</u> 静止 K⁺を用いた R_K測定は、運動学的分解能に 優れ、精密測定によってレプトン普遍性破れを探索出来る。 参考文献:⁷⁾ PRD 82 (2010) 072005.⁸⁾ PRD 88 (2013) 072012.⁹⁾ PRL 115 (2015) 11108.¹⁰⁾ PRL 113 (2014) 151601.¹¹⁾ PLB 719 (2013) 326.¹²⁾ EPJC 64 (2009) 627.

(2) 研究目的・内容(図表を含めてもよいので、わかりやすく記述してください)

① 研究目的、研究方法、研究内容について記述してください。

② どのような計画で、何を、どこまで明らかにしようとするのか、具体的に記入してください。

- ③ 共同研究の場合には、申請者が担当する部分を明らかにしてください。
- ④ 研究計画の期間中に異なった研究機関(外国の研究機関等を含む)において研究に従事することを予定している場合はその旨を記載してください。

研究目的: 静止 K⁺中間子を用いてセミレプトニック2体崩壊の分岐比 R_Kを精密に測定する。

<u>研究方法:</u> E36 実験は J-PARC ハドロン実験施設の大強度 K^+ ビームを 使用し、静止 K^+ 法を採用することで実施された。右図に E36 実験の 検出器の全体図を示す。800 MeV/c の分離 K^+ ビームは K1.1BR ビーム ラインを用いて実験エリアまで輸送され、フィッチ型チェレンコフ検 出器によって K^+ と π^+ を識別する。ビームはディグレダーを用いて減 速され、位置感応型のファイバー標的にて静止される。

申請者登録名 伊丽

伊藤 博士

(研究目的・内容の続き)

結晶に生成するので、各モジュールのエネルギー和とエネルギーで重みをかけたモジュール重心和から γ 線エネルギーと入射位置を求めることが出来る。また、荷電粒子通過用の間隙を通過するγ線を磁石最外 部に取付けた鉛プラスチックサンドウィッチ検出器(GV)で観測する。CsI(Tl)及びGVでγ線を0個と1個 観測出来た事象が K_{e2} と $K_{\mu 2}$ として識別されることになる。

研究内容: $R_{\rm K}$ は2体崩壊 K_{e2} と K_{u2} 以外に γ 線を放出する崩壊過程を考慮しなければならない。荷電レプト ンの内部輻射過程(IB: Internal Bremsstrahlung) $K_{e2\gamma}^{(IB)}$ $(K^+ \rightarrow e^+ \nu_e \gamma) \geq K_{\mu 2\gamma}^{(IB)}$ $(K^+ \rightarrow \mu^+ \nu_\mu \gamma)$ も含めて取り扱 う必要がある。一方、中間子の構造を反映(SD: Structure Dependent) した崩壊過程 $K_{e_{2\nu}}^{(SD)}$ ($K^+ \rightarrow e^+ \nu_e \gamma$) と $K^{(SD)}_{\mu 2\gamma}$ ($K^+ \rightarrow \mu^+ \nu_\mu \gamma$)は R_K の決定には含めずに背景事象として取り扱う。更に、検出器のアクセプタン ス Ω で補正された K_{e2} と K_{u2} の数によって R_K を決定し、標準模型との差異を見出すことを目標とする。

標的内部における K⁺とレプトンの軌道を下図(a)に示す。3 台の MWPC(C2, C3, C4)を通過した位置と標的、 SFT の位置情報から5点軌道解析によって運動量を決定する(下図b)。軌道解析によって得られた運動量分

に粒子識別解析を行った。下図(a)は運動量解析のみで選別された事象の TOF M² と運動量の相関図である。 これに AC と PGC に信号があることを要求することで $K_{\pi 2}$ と $K_{\mu 2}$ が抑制され、 K_{e3} が現れた(下図 b)。更に、 $M^2 < 5,600 (MeV/c^2)^2$ の条件で抜き出し、運動量軸に射影すると K_{e2} ピークを観測できた(下図 c)。

そして、IBとSDy線輻射事象を解析するためにCsI(TI)解析の整備を行った。これには、運動学が単純なK_{π2} で放出されるπ⁰を用いた。荷電粒子の運動量を用 250 300 (a) (b) いてK_{π2}事象を選別し、その時の CsI(TI)情報から 250 200 $\pi^0 \rightarrow \gamma \gamma$ 事象における γ 線開口角 $\theta_{\gamma\gamma}$ (右図 a)と 200 $\pi^0\pi^+$ の開口角 $\theta_{\pi^0\pi^+}$ (右図 b)を測定した。得られた /bin 150 150 結果は極めて良好であり、開発してきたエネルギ count 100 100 ーおよび時間決定用波形模型の妥当性が証明で 50 きた。 50 0 -1 0 -1.01 -0.99 -0.98 -0.5 0.5 0

> 申請者登録名 伊藤 博士

 $\cos \theta_{v}$

ΡD

-0.97

 $\cos \theta(\pi^+ \pi^0)$

(研究目的・内容の続き)

② $R_{\rm K}$ を測定する上で重大な背景事象が $K_{e2\gamma}^{(\rm SD)}$ である。まず CsI(TI)検出器と GV 検出器を用いて、この事象について研究する。この崩壊分岐比は(9.4 ± 0.4)× 10^{-6} で報告例が少ない過程の一つである 7。本研究は静止 K^+ を使用しているため、系統誤差の少ない e^+ と γ 線の角度相関実験が可能となり、精度良く形状因子を決定出来る。検出器アクセプタンスをモンテカルロシミュレーションによって補正して、理論計算と比較することで形状因子を導く。その後、 K_{e2} 事象に入り込む $K_{e2\gamma}^{(\rm SD)}$ 背景事象を排除し、アクセプタンスを補正することで $R_{\rm K}$ を決定する。 $R_{\rm K}$ 解析が終了した後、さらに難しい e^+e^- を伴う崩壊過程解析に取り組む。 主に、 $K^+ \rightarrow e^+v_\mu e^+e^-$, $K^+ \rightarrow \mu^+v_\mu e^+e^-$, $K^+ \rightarrow \pi^+e^+e^-$ 等が挙げられるが、報告例が少なく未だに理解されていない現象が存在する。 e^+e 対はファイバー標的、TOF カウンター、エアロゲルチェレンコフ検出器(AC)、CsI(TI)を複合的に組み合わせることで検出される。また中性未知粒子 Xを、 $K^+ \rightarrow \mu^+v_\mu X$, $X \rightarrow e^+e^-$ 事象を調べることで、10-100 MeV/ c^2 の質量領域において探索することも可能になる。この探索の背景雑音が γ 線及び e^+e^- を伴う K^+ 崩壊であるため、新粒子探索解析は全ての物理解析を実施した後に取り組む。

③ E36 実験のデータ収集はすでに終了しており、今後はデータ解析や論文発表が中心となる。申請者はこれらのほぼ全般においてグループを牽引する役割を果たす。中でもK^(SD)事象の形状因子決定と、R_K 測定研究に責任を持つ。その為、(a)荷電粒子運動量測定、(b)荷電粒子粒子識別、(c) y線エネルギー、時間、放出角度測定、(d)シミュレーションを用いた実験条件の再現性確認、(e)標的内荷電粒子パターン解析、等を遂行する。その他の希崩壊事象や新粒子探索については、共同実験者と協力して研究を進める。

④ 研究計画の期間中に異なった研究機関(外国の研究機関等を含む)において研究に従事することは予 定していない。

(3) 研究の特色・独創的な点

次の項目について記載してください。
 ① これまでの先行研究等があれば、それらと比較して、本研究の特色、着眼点、独創的な点
 ② 国内外の関連する研究の中での当該研究の位置づけ、意義

③ 本研究が完成したとき予想されるインパクト及び将来の見通し

① 先行研究(KLOE, NA62)では K^+ の飛行中崩壊法を用いてセミレプトニック2体崩壊分岐比 R_K が測定 された。それに対して、本研究は静止 K^+ を用いた R_K 測定が特徴的である。それによって、レプトンが単 色エネルギーを持つため運動学的分解能が良くなり、系統誤差の小さい R_K 測定が出来る。また、J-PARC (大強度陽子加速器施設)において大強度 K^+ ビームを使用したことで、統計精度が向上した。すなわち、こ れらの実験手法の採用によって高精度の R_K 測定が達成され、本研究の独創的な部分と言える。また、測 定装置は出来得る限り対称的に構築されているため、測定された物理量分布が歪まず、シミュレーション による実験データの再現性が非常に良いことも重要である。 R_K 測定以外にも様々な副産物実験があり、 R_K 測定の背景事象として $K^{(SD)}_{e2\gamma}$ の崩壊過程、希崩壊過程、新粒子探索、等の研究も計画されており K物理 の発展に貢献する。

② 現在の素粒子物理学では、レプトン(*e*, µ, τ)普遍性の破れが標準模型を超える新しい物理を開拓する手 がかりの一つになる。最近の BaBar, Belle, LHCb 実験において、 $R(D^*) = B(\overline{B^0} \rightarrow D^{*+}\tau^-\overline{\nu_{\tau}})/B(\overline{B^0} \rightarrow D^{*+}\mu^-\overline{\nu_{\mu}}), R(D) = B(\overline{B^0} \rightarrow D^+\tau^-\overline{\nu_{\tau}})/B(\overline{B^0} \rightarrow D^+\mu^-\overline{\nu_{\mu}}), R_K = B(B^+ \rightarrow K^+\mu^+\mu^-)/B(B^+ \rightarrow K^+e^+e^-)$ がレプトン普遍性の破れを仄めかす報告がされている。また、K中間子セクターにおいても KLOE や NA62 においてレプトン普遍性の破れ探索研究が注目されている。本研究は静止 K*法を使用するため、KLOE や NA62 とは実験手法が大きく異なり、互いに相補的な関係である。現在までに ATLAS 実験で超対称性粒子が発見されていないが、K物理研究は超対称性粒子による影響だけでなく、それ以外の新たな物理を発見する可能性を秘めている。

③ これまでに静止 K+を用いた R_K 測定結果は報告されたことがなく、従来の飛行崩壊法とは大きく実験の系統性が異なる。また、高強度 K ビームの使用により、R_Kの統計精度を従来の実験よりも向上させることができる。世界平均を考える時に、実験手法が異なる精度の高いデータの提供は K 中間子セクターにおけるレプトン普遍性研究へ大きな影響を与える。また 10-100 MeV/c² 領域の新粒子探索は興味深く、探索範囲に条件を与えるだけでも今後の研究に貢献するだろう。

(4) 年次計画

申請時点から採用までの準備状況を踏まえ、1~3年目について年次毎に記載してください。元の枠に収まっていれば、年次毎の配分は変 更して構いません。

(申請時点から採用までの準備)現在までの基礎的な解析でK_{e2}のピークは観測されているが、解析の精度や 信頼性をさらに高めなければならない。そのため、採用までの期間において将来の解析で必要になる、荷 電粒子解析、γ線解析、モンテカルロシミュレーションなどの改良を行なっていく。共同研究者と進捗結 果の議論を続けることで、採用されてから直ちに研究に取り組めるようにする。

(1年目) $R_{\rm K}$ を高精度で決定することを最大の目標とするが、そのための第一歩として $R_{\rm K}$ 測定の背景事 象である $K_{e2\gamma}^{\rm (SD)}$ 事象を解析する。識別された荷電粒子と γ 線の運動量によって $K_{e2\gamma}$ 事象を選択することがで きる。 $K_{e2\gamma}$ 事象には、内部輻射過程(IB: Internal Bremsstrahlung) $K_{e2\gamma}^{\rm (IB)}$ ($K^+ \rightarrow e^+ v_e \gamma$)と中間子の構造を反映 (SD: Structure Dependent) した崩壊過程 $K_{e2\gamma}^{\rm (SD)}$ ($K^+ \rightarrow e^+ v_e \gamma$)が存在するが、2つの過程は $e^+ \gamma$ 角度 $\theta_{e^+ \gamma}$ と γ 線エネルギー E_{γ} が特徴的な構造を持つ。故に、 $\theta_{e^+ \gamma} - E_{\gamma}$ 分布を精密に求めることで分離が可能である。次 に、運動学的に簡単な $K_{\pi2}$, K_{e3} , $K_{\mu3}$, $K_{\mu2}$ 事象をシミュレーションで再現させ、 $K_{e2\gamma}^{\rm (SD)}$ における荷電粒子と γ 線のアクセプタンスが正しく補正されることを確認する。そして、検出器アクセプタンスを補正し $K_{e2\gamma}^{\rm (SD)}$ の 崩壊分岐比を決定する。

下図は GEANT4 で計算した $K_{e2\gamma}^{(SD)}$ 崩壊事象で、(a)は $e^+ \ge \gamma$ 線エネルギー相関図(Dalitz plot)、(b)は角度 $\theta_{e^+\gamma}$ 分布、(c)は γ 線エネルギー分布である。これらは、現在報告されている形状因子を用いて計算された。 形状因子を変えることにより発生する Dalitz plot の歪みを考慮し、実験結果を最も再現する値を求める。 そして、得られた形状因子を用いて K_{e2} 事象に入り込んでいる SD 事象量を見積もる。その後 R_K の導出に 移行する。 $K_{e2} \ge K_{\mu2}$ の全ての実験データがシミュレーションで再現できることを慎重に確認し、それぞれ のアクセプタンスを決定する。最後にアクセプタンスで補正した $K_{e2} \ge K_{\mu2}$ 数の比から R_K を決定する。 R_K の決定には人間による偏りがないように Blind 解析法を採用することをここに付け加えておく。

(2年目) R_K 解析の終了後、さらに難しい e^+e^- を伴う崩壊過程解析に取り組む。主に、 $K^+ \rightarrow e^+\nu_\mu e^+e^-$, $K^+ \rightarrow \mu^+\nu_\mu e^+e^-$, $K^+ \rightarrow \pi^+e^+e^-$ 等が挙げられるが、報告例が少なく未だに理解されていない現象が存在す る。 e^+e^- 対はファイバー標的、TOF カウンター、エアロゲルチェレンコフ検出器(AC)、CsI(TI)を複合的に 組み合わせることで検出される。すなわち下図に示すように、標的で K^+ の軌道と3本の荷電粒子の軌道を 観測し、複数のACとTOFモジュールで e^+e^- の信号を検出し、CsI(TI)でエネルギーと放出角度を測定する。 実際の実験状況では更にビーム由来の雑音を含むため、この中で標的のパターン解析が最も難しいと予想 される。そのため、より人間の直感に近い判断力を備えた「パターン解析アルゴリズム」を開発する。ま

た、擬似的に再現させたデータを使用して、標的内における応答性質、時間特性、他の検出器への影響なども調べる。特に γ 線の e^+e^- 対生成や $\pi^0 \rightarrow e^+e^-\gamma$ が問題になり、場合によっては likelihood 法などを駆使してこれら背景雑音を除去する。これらの解析で $K^+ \rightarrow e^+\nu_\mu e^+e^-, K^+ \rightarrow \mu^+\nu_\mu e^+e^-, K^+ \rightarrow \pi^+e^+e^-$ 等の事象を抜き出し、形状因子等を決定する。

(3年目)この年は挑戦的な解析に取り組む。特に注目するべき研究は未知中性粒子の探索であり、 e^+e^- 不変質量分布にピーク構造の存在の有無を 10-100 MeV/ c^2 の領域で調べる。この探索の背景雑音が γ 線及び e^+e^- を伴う K^+ 崩壊であるため、新粒子探索解析は全ての物理解析を実施した後に取り 組む。

(5) 受入研究室の選定理由

採用後の受入研究室を選定した理由について、次の項目を含めて記載してください。

① 受入研究室を知ることとなったきっかけ、及び、採用後の研究実施についての打合せ状況

② 申請の研究課題を遂行するうえで、当該受入研究室で研究することのメリット、新たな発展・展開

※ 個人的に行う研究で、指導的研究者を中心とするグループが想定されない分野では、「研究室」を「研究者」と読み替えて記載し てください。

研究機関移動の要件について、実質的な研究機関移動と認められるか否かは採否の重要な判断基準となります。出身研究機関以外を 受入機関とする場合でも、以下のような状況については、実質的な研究機関移動と認められません。実質的な研究機関移 動に該当しないと誤解を招く恐れがある場合は、<u>博士課程での研究の単なる継続ではなく、研究環境を変えて、新たな研究課題に挑</u> 戦するための実質的な研究機関移動であることを研究室の選定理由と関連づけて具体的に説明してください。

・申請者の出身研究室に同時期にいた研究者を受入研究者とする等、大学院博士課程在学当時より指導関係にある者を受入研究 者とすること。

・研究指導の委託先で研究を続ける等、博士課程在学当時から受入研究機関で研究を行っていること。

・採用後の主たる研究活動が博士課程在学時の研究機関で行われること。

① J-PARC E36 実験の検出器では、千葉大で開発されたシリカエアロゲルを用いたチェレンコフ 検出器が採用され、申請者は検出器建設時から実験に参加してきた。E36 実験のデータ収集は終 了したものの、現在は解析が始まったばかりであり、終了には程遠い。そのため、E36 実験の研 究責任者であり受入先の大阪大学・清水俊氏の指導の下、今後もデータ解析、ミュレーション計算、 論文発表を続けることを希望する。申請者は在学時に CsI(TI)電磁カロリメータの信号波形模型を 開発し、エネルギーと時間分解能を向上させる貢献をしていて、採用後も更に研究を発展させる決 意である。大阪大学に移動することで、物理的な背景事象を詳しく理解する共同研究者と共に、個々 の研究課題について日々の打合せによって進めていく。

② 申請者が本研究を遂行する上で、実験開始時から積極的に参加していたため、検出器に精通している利点がある。特にγ線を伴う崩壊の取り扱いは、共同研究者の中で申請者が最も理解しているという自信がある。今後もγ線解析を更に発展させると共に、E36 実験の主目的である「レプトン普遍性破れ探索」及び複数の副産物研究に貢献していきたい。受入れ先の大阪大学では、研究室の分野が粒子線物理学から原子核物学に変わるため、これまでの経験を活かしつつも、従来の常識にとらわれない新たな発展に貢献したい。

(6) 人権の保護及び法令等の遵守への対応

本欄には、研究計画を遂行するにあたって、相手方の同意・協力を必要とする研究、個人情報の取り扱いの配慮を必要とする研究、生命 倫理・安全対策に対する取組を必要とする研究など法令等に基づく手続きが必要な研究が含まれている場合に、どのような対策と措置を講 じるのか記述してください。例えば、個人情報を伴うアンケート調査・インタビュー調査、国内外の文化遺産の調査等、提供を受けた試料 の使用、侵襲性を伴う研究、ヒト遺伝子解析研究、遺伝子組換え実験、動物実験など、研究機関内外の情報委員会や倫理委員会等における 承認手続きが必要となる調査・研究・実験などが対象となりますので手続きの状況も具体的に記述してください。 なお、該当しない場合には、その旨記述してください。

個人情報を伴うアンケート調査・インタビュー調査、国内外の文化遺産の調査、提供を受けた試料の使用、 侵襲性を伴う研究、ヒト遺伝子解析研究、遺伝子組換え実験、動物実験などは行わない。

申請者登録名

4. 研究業績(下記の項目について申請者が<u>中心的な役割を果たしたもののみ</u>項目に区分して記載してください。その際、通 し番号を付すこととし、該当がない項目は「なし」と記載してください。申請者にアンダーラインを付してください。業績が 多くて記載しきれない場合には、主要なものを抜粋し、各項目の最後に「他〇報」等と記載してください。 査読中・投稿中の ものは除く)

(1) 学術雑誌等(紀要・論文集等も含む)に発表した論文、著書(査読の有無を区分して記載してください。査読のある場合、印刷済及び採録決定済のものに限ります。)

著者(申請者を含む全員の氏名(最大 20 名程度)を、論文と同一の順番で記載してください)、題名、掲載誌名、発行所、巻号、pp 開 始頁-最終頁、発行年をこの順で記入してください。

- (2) 学術雑誌等又は商業誌における解説、総説
- (3) 国際会議における発表(ロ頭・ポスターの別、査読の有無を区分して記載してください) 著者(申請者を含む全員の氏名(最大 20 名程度)を、論文等と同一の順番で記載してください)、題名、発表した学会名、論文等の番 号、場所、月・年を記載してください。発表者に〇印を付してください。(発表予定のものは除く。ただし、発表申し込みが受理されたも のは記載しても構いません。)
- (4) 国内学会・シンポジウム等における発表 (3)と同様に記載してください。
- (5) 特許等(申請中、公開中、取得を明記してください。ただし、申請中のもので詳細を記述できない場合は概要のみの記述で構いません。)
- (6) その他 (受賞歴等)
- (1) 学術雑誌等(査読あり)
- [1] O. Mineev, S. Bianchin, M.D. Hasinoff, K. Horie, Y. Igarashi, J. Imazato, <u>H. Ito</u>, H. Kawai, S. Kodama, M. Kohl, Yu. Kudenko, S. Shimizu, M. Tabata, A. Toyoda, N. Yershov, "The design and basic performance of a Spiral Fiber Tracker for the J-PARC E36 experiment experiment", Nuclear Instruments and Methods in Physics Research Section A, vol. 847 pp. 136-141, 2017.
- [2] <u>Hiroshi Ito</u>, Soorim Han, Atsushi Kobayashi, Naomi Kaneko, Hideyuki Kawai and Makoto Tabata, "Identification of ⁹⁰Sr/⁴⁰K based on Cherenkov Detector for Recovery from the Fukushima Nuclear Accident", JPS Conference Proceedings, vol. 11, 070002, 2016.
- [3] Oleg Mineev, Yury Kudenko, Nikolay Yershov, Sebastien Bianchin, Michael Hasinoff, Keito Horie, Suguru Shimizu, Youichi Igarashi, Jun Imazato, Akihisa Toyoda, <u>Hiroshi Ito</u>, Hideyuki Kawai, Satoshi Kodama, Makoto Tabata, "A Spiral Fiber Tracker for the J-PARC E36 experiment", Proceedings of Science, PoS (PhotoDet2015) 069, 2015.
- [4] <u>H. ITO</u>, S. Han, S. Iijima, H. Kawai, S. Kodama, D. Kumogoshi, K. Mase, M. Tabata, "Development of Multipurpose Aerogel Cherenkov Counter", Proceedings of Science, Pos (TIPP2014) 325, 2014.
- [5] <u>H. ITO</u>, S. Han, S. Iijima, H. Kawai, S. Kodama, D. Kumogoshi, K. Mase, M. Tabata, "Development of real time ⁹⁰Sr counter applying Cherenkov light detection", Proceedings of Science, Pos (TIPP2014) 242, 2014.
- [6] Makoto Tabata, Sebastien Bianchin, Michael D. Hasinoff, Robert S. Henderson, Keito Horie, Youichi Igarashi, Jun Imazato, <u>Hiroshi Ito</u>, Alexander Ivashkin, Hideyuki Kawai, Yury Kudenko, Oleg Mineev, Suguru Shimizu, Akihisa Toyoda, Hirohito Yamazaki, "Assembly and bench testing of a spiral fiber tracker for the J-PARC TREK/E36 experiment", JPS Conference Proceedings, vol. 8, 024001, 2014.
- [7] Makoto Tabata, Keito Horie, Youichi Igarashi, Jun Imazato, <u>Hiroshi Ito</u>, Alexander Ivashkin, Hideyuki Kawai, Yury Kudenko, Oleg Mineev, Suguru Shimizu, Akihisa Toyoda, Hirohito Yamazaki, "Progress in developing a spiral fiber tracker for the J-PARC E36 experiment", Proceedings of Science, Pos (TIPP2014) 328, 2014.
- (2) 学術雑誌等又は商業誌における解説、総説

なし

- (3) 国際会議における発表
- [8] <u>H. Ito</u>, K. Horie, S. Kodama, H. Kawai, S. Shimizu, for E36 TREK collaboration, "Development of Versatile Calibration Method for Electro-Magnetic Calorimeters Using a Stopped Cosmic-Ray Beam", 2016 IEEE NSS MIC, N24-8, 29 Oct. 5 Nov., 2016, Strasbourg, France (ポスター、査読あり).
- [9] <u>H. Ito</u>, A. Kobayashi, H. Kawai, S. Kodama, T. Mizuno and M. Tabata, "Identification of 90Sr and 40K based on Cherenkov Radiation at Lower Background Suppressed Cosmic Rays", 2016 IEEE NSS MIC, N08-22, 29 Oct. 5 Nov., 2016, Strasbourg, France (ポスター、査読あり).

(研究業績の続き)

- [10] <u>Hiroshi Ito</u>, Soorim Han, Atsushi Kobayashi, Naomi Kaneko, Hideyuki Kawai, Makoto Tabata, "Identification of 90Sr/40K based on Cherenkov Detector for Recovery from the Fukushima Nuclear Accident", iSRD2016, O9, 18-21 Janualy 2016, KEK Kobayashi hall (口頭、査読あり)
- [11] <u>Hiroshi ITO</u>, Soorim Han, Naomi Kaneko, Hideyuki Kawai, Satoshi Kodama, Atsushi Kobayashi, Makoto Tabata, Real-time ⁹⁰Sr Counter, Advancements in Nuclear Instrumentation Measurement Methods and their Applications 2015, #222, 20-24 April 2015, Lisbon Congress Center(ポスター、査読 あり).
- [12] <u>H. ITO</u>, S. Han, S. Iijima, H. Kawai, S. Kodama, D. Kumogoshi, "Development of 3D-PET detector with Wavelength shifting fiber", IEEE NSS MIC, M11-16m Washington State Convention Center · Seattle, WA USA, 8-15 November, 2014 (ポスター、査読あり).
- [13] <u>H. ITO</u>, S. Han, S. Iijima, H. Kawai, S. Kodama, D. Kumogoshi, K. Mase, M. Tabata, "Development of Multipurpose Aerogel Cherenkov Counter", 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014), #325, Amsterdam, Netherlands, 2-6 June 2014 (ポス ター、査読あり).
- [14] <u>H. ITO</u>, S. Han, S. Iijima, H. Kawai, S. Kodama, D. Kumogoshi, K. Mase, M. Tabata, "Development of Real time 90Sr counter applying Cherenkov light detection", 3rd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2014), #242, Amsterdam, Netherlands, 2-6 June 2014 (口頭、査読あり).

他 18 報

- (4) 国内学会・シンポジウム等における発表
- [15] <u>伊藤博士</u>()、河合秀幸、小林篤史、児玉諭士、水野貴裕、田端誠, "Search for Reasons of Incidence of Lung Cancers by Measurement of Environmental Radiation based on Cherenkov Detection", 第 113 回 日本医学物理学会学術大会, O-093, 2017 年 4 月 14 日、パシフィコ横浜(口頭、査読なし).
- [16] <u>伊藤博士〇</u>, 堀江圭都, 五十嵐洋一, 今里純, 河合秀幸, 児玉諭士, 清水俊, for E36 TREK collaboration, "J-PARC E36 実験: Γ(K⁺→e⁺v_e)/Γ(K⁺→μ⁺v_µ)測定によるレプトン普遍性破れ探索実験の ガンマ線測定最適化の研究", 日本物理学会 第72回年次大会, 19PK34-7, 2017 年3月 17-20 日, 大阪 大学 (口頭、査読なし).
- [17] <u>伊藤博士〇</u>、堀江圭都、五十嵐洋一、今里純、河合秀幸、児玉諭士、清水俊、田沼良介、for E36 Collaboration, "J-PARC E36 実験用 Csl(Tl)カロリメータのエネルギー較正", 日本物理学会 2016 年秋 季大会, 22aSF-3, 2016 年 9 月 22 日、宮崎大学 (口頭、査読なし).
- [18] 伊藤博士〇、兼子奈緒見、河合秀幸、小林篤史、児玉諭士、水野貴裕、田端誠, "リアルタイムストロンチウム 90 カウンターの低雑音化研究", 第 112 回日本医学物理学会学術大会, O-052, 2016 年 9 月 9日、沖縄コンベンションセンター (口頭、査読なし).
- [19] <u>Hiroshi Ito</u>, Soorim Han, Atsushi Kobayashi, Naomi Kaneko, Hideyuki Kawai, "波長変換ファイバー を用いた位置分解能 0.1 mm を持つ PET 装置開発研究", 第 110 回日本医学物理学会学術大会, P-010, 18-20 September 2015, 北海道大学 学友会館フラテ (ポスター、査読なし).
- [20] <u>Hiroshi ITO</u>, Soorim Han, Naomi Kaneko, Hideyuki Kawai, Satoshi Kodama, Atsushi Kobayashi, "Readout of high resolution DOI for whole-body 3D-PET detector using wavelength shifting fibers", 第 109回日本医学物理学会学術大会, O-003, 2015 年 4 月 16 – 19 日, パシフィコ横浜 (口頭、査読なし).

他 15 報

(5) 特許等

なし

(6) その他

なし