A study and development of real-time strontium-90 counters based on Cherenkov radiation detection

チェレンコフ検出に基づいたリアルタイムストロンチウム90カウンターの開発研究

Hiroshi Ito Graduate School of Science, Chiba University

伊藤博士 千葉大学理学研究科基盤理学専攻 物理学コース 博士後期課程3年次

Contents

1. Introduction

2. Basic concept of an aerogel Cherenkov detector using wavelength-shiftingfibers

- 3. Background study of environmental radiation
- 4. Design of a prototypedetector
- 5. Performance of the prototypedetector
- 6. Summary

1. Introduction

1. Introduction $\frac{1}{2}$ I. Introdu
Eukust

- Fukushima Nuclear Accident, March, in 2011. \overline{y} $\overline{$
- ⁹⁰Sr ($\tau_{1/2}$ =28.8 yr) and ¹³⁷Cs ($\tau_{1/2}$ =30.2 yr) are focused in the recent study.
- Decay chain: ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y} \rightarrow {}^{90}\text{Zr}$.
- \bullet $^{90}\rm{Y}$ radioactivity is close to that of $^{90}\rm{Sr}$ by radioactive equilibrium. $\sum_{i=1}^{\infty}$ y $\sum_{i=1}^{\infty}$
- Strontium is an alkali earth metal and tends to accumulated into the bone. e, orientific an alitan oaren mota
- Measurement of 10-Bq/kg ⁹⁰Sr is required rapidly. **Chapter 5** • Measurement of 10 -Bq/kg ⁹⁰Sr is required rapidly η for 5

1. Introduction

- 1.1. Conventional method of ⁹⁰Sr radioactivity measurement
- Conventional method based on a Chemical extraction.
	- Sample is burned and become ash, it takes to measure a few week $-$ a month.
	- It is difficult to measure ⁹⁰Sr concentration of raw-fresh foods rapidly.
- End-point method
	- Magnetic Spectrometer, Calorimeter.
	- It is difficult to determine the end-point because Environmental radiation make be background noise.
- Range method
	- Counting β and γ rays, non-calorimeter, suppressing β rays with low energy.
	- Lower limit: a few Bq/g in 10-min measuring (500-1000 Bq/kg @1-h measuring).
- Cherenkov radiation method
	- Using silica aerogel (n=1.047), Eff.(β(¹³⁷Cs))/Eff.(β(⁹⁰Y)) = (2-4)×10⁻².
	- An effective area: 5×5 cm², detection limit of 0.3 Bq.
	- 2012 $40K$ is most background

1. Introduction

1.2. This study and motivations

Purpose: measurement of 10 Bq/kg 90 Sr at 1 hour in environmental radiation such as ⁴⁰K.

Precise β rays inspection = Large size detection

e.g. 100×20 cm² Sample 1 kg (5-mm thick) 10 Bq/kg 0.1% eff.

BG rate should be less than a few count rate at 1 hour for detection 10-Bq ⁹⁰Sr significantly.

Count rate is more than 100 cph.

- PMT thermal noise is a few kHz.
- Accidental γ noises

It is not possible to inspect 90 Sr precisely by using a large PMT.

- 1) Ring Image Cherenkov (RICH)
	- ... cost, Cherenkov angle= 11.4° , noise rate.
- 2) Reduce the amount of substance of photo-device.
	- ... using wavelength-shifting fibers, threshold type.

1. Introduction

1.2. This study and motivations

- I developed a threshold-type Cherenkov detector to measure 90 Sr concentration using silica aerogel (n=1.041) and wavelength-shifting fibers.
- I studied a basicmechanismof the Cherenkov detector.
- I studied background of environmental radiation, particularly $214B$ i as the radon progenies.
- I produced a prototype detector with $S=300$ cm².
- The performance was estimated using radioactive sources.

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Cherenkov radiation

It is required for $40K$ β rays to not emit Cherenkov photons.

A threshold of refractive index is given as

$$
n_{\rm th} = \frac{c}{v} = \frac{E}{pc}
$$

=
$$
\frac{m_{\rm e}c^2 + K}{\sqrt{(m_{\rm e}c^2 + K)^2 - m_{\rm e}^2c^4}}
$$

where m_e is electron mass, K is β ray kinetic energy (MeV). In a case of $K = 1.31$ MeV, $n_{\text{th}} = 1.041$.

In this index, knocked out e- by Compton scattering of γ ray with E γ < 1.53 MeV is not satisfy the Cherenkov condition in the areogel.

$$
\cos \theta_c = \frac{c}{nv} < 1
$$

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers **(2)** エアロゲル・チェレンコフ・カウンター

Silica aerogel z ₁₁₁ x 6) z 0.001 z 0

- Silica aerogel is a material as $SiO₂ + Air$.
- Properties:
	- (1) Low density $(0.1 \sim 0.2 \text{ g/cm}^3)$
	- (2) Low refractive index
	- (3) high transparency for the visible light
- Index control: 1.003 < n < 1.25
- Without a hydrophilic properties by a hydrophobic treatment

Detection Mechanism

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Accidental noise by $137Cs \gamma$ rays

Accidental noise by $137Cs$ γ rays

Optical models Cherenkov photons

- Optical models were developed to understand wavelength-shifting fibers collection system for Cherenkov photons by reading PMT.
- The model's parameters fixed with experimental data.
- Collection efficiency of the fibers was estimated using the models.

Optical models Cherenkov photons

The number of emitted photons is given as

$$
N=2\pi\alpha L\left(1-\frac{1}{n^2\beta^2}\right)\int_{200}^{800}\!\frac{d\lambda}{\lambda^2}
$$

where α is fine-structure constant, L is path length of the particle, $\beta = v/c$, λ is the wavelength of emitted photons.

Optical models Silica aerogel transmittance

The transmittance $T(\lambda)$ is given as

$$
T(\lambda) = A \exp\left(\frac{-Ct}{\lambda^4}\right) ,
$$

where the amplitude is $A=1$, $C = 5.33 \pm 1$ 0.03 μ m/cm, t =1−6 cm.

• The effective Cherenkov spectrum has a peak at 300−500 nm

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Optical models PMT

<u>では、この中には、この中には、この音楽大学博士論文審査公聴会</u>

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers Basic concept an acroger Cherenkov activities asing on which (a) a 5-inch PMT (R1250-03) or (b) a wavelength-shifting fiber sheet

Measurement of light collection efficiency

个人的人的人物,但如果这样的人的人的人都没有一个人的人的人<mark>千葉大学博士論文審査公聴会</mark>

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers reflection and the outlet size of the outlet size was 500 cm $Poisson Function$ Basic concept an acroger Cherenkov activities asing poisson Eunction Eitting renkov detector using. The peak ϵ \mathcal{C} processes not to emit Cherenkov photons also in the coincidence events of Poisson Function Fitting

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers $\frac{1}{2}$ min = 30*.*7 engin-shiiting number of photoelectrons. The observed number of ph was proportional to the thickness, and the slope is (3*.*20*±*0*.*17)×10−¹ mm−¹.

Measurement of light collection efficiency

<u>をもとして、 ここの ままをおくする こころをもっている こころをおくする こころ あいまん あいまん あいまん あいまん あいまん あいまん こうしょう こうしょう こうしょう こうしょう こうしょう こうしょういく</u>

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers Basic concept all acroger Cherenkov activities asing on which (a) a 5-inch PMT (R1250-03) or (b) a wavelength-shifting fiber sheet

Measurement of light collection efficiency

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Measurement of light collection efficiency

(b) \overline{D}

千葉大学博士論文審査公聴会 $\begin{array}{l} \mathcal{I} \ \mathcal{F} \ \mathcal$ $\frac{1}{2}$ fibers. The blue histogram is the data function of $\frac{1}{2}$ fitting function of $\frac{1}{2}$

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers *AP*(*k/*α*,* ν*/*α), where *A* is an amplitude, *P*(*k,* ν) is the Poisson function, and α is a free parameter. As a result of fitting, *A* = 80*.*6 *±* 4*.*8, ν = 5*.*71 *±* 0*.*09,

Impact of charged particles passing though the fibers mean number of photoelectrons of 5*.*71 *±* 0*.*09 and the detection efficiency of

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Cherenkov photons from 90 Sr and 90 Y β rays $\mathbf S$

2. Basic concept an aerogel Cherenkov detector using wavelength-shifting fibers

Cherenkov photons from 90 Sr and 90 Y β rays

Results

- Aerogel (n=1.0411): K_{th}=1.31 MeV, Eγ^(thr.)=1.53 MeV.
- Accidental noise can be reduce to 11% using the fibers than 5 sinch PMT reading.
- Optical models were developed forthe Cherenkov detector.
	- 1. Cherenkov spectrum
	- 2. Silica aerogel transmittance
	- 3. Wavelength-shifting fibers absorption&emission spectrum
	- 4. PMT quantumefficiency
	- 5. Fix with cosmic-ray test
- Light collection efficiency was determined to be 1.0-1.4%.
- Cherenkov photons by $90Y$ β rays were observed using the aerogel and B-3 & Y-11.

3. Background study of environmental radiation

3. Background study of environmental radiation 3 Background study of environmental radiation

3.1. Cosmic-ray muons

3. Background study of environmental radiation

- $3.2.$ y-rays energy spectroscopy of the air
	- It was considered that $40K$ is not to be background because knocked out e^- from $γ$ ray (1.46 MeV) dose not satisfy the Cherenkov condition in the aerogel (n=1.041).
	- Thorium include in the concrete blocks of the buildings. Radon progenies attach on surface in the environmental.
	- Knocked out e⁻ from y rays (Ey>1.53 MeV) emitted from ²¹⁴Bi and ²⁰⁸Tl can satisfy the Cherenkov conditionthere.
	- Average of radon (222 Rn) concentration in the air is 45 Bq/m³.
	- Here, radon progenies (particularly 2^{14} Bi) in the air were focused by the study.
	- $214B$ i emits β rays (max. 3.27 MeV).

3. Background study of environmental radiation 3. Dackground study of Environmental lauratic

3.2. γ -rays energy spectroscopy of the air

3. Background study of environmental radiation

3.2. γ-rays energy spectroscopy of the air

3. Background study of environmental radiation

3.2. γ -rays energy spectroscopy of the air

Results

- 214 Bi concentration in the air is less than 100 Bq/m³.
- Gap between sample and trigger counter should be less than 1 cm.
- The air in space under the sample should be removed out.

千葉大学博士論文審査公聴会 of 32 mm for the suppression of external gamma rays from ²¹⁴Bi, ²⁰⁸Tl, and $40K$ in the concrete time concrete. With this third behavior $85K$

3. Background study of environmental radiation packground study or environmental radiation

3.3. β rays surface inspection of sample sheets adsorbing radon progenies

3. Background study of environmental radiation $\mathcal{F}_{\mathcal{A}}$, result of the $\mathcal{B}_{\mathcal{A}}$ rays inspection. The time spectrum of count rates for the time spectrum of the time spectrum of the time spectrum of count \mathcal{A} polyethylene sample sample sample sample sample sample sample sample sample. The 3 h 40 min in the roomair.

3.3. β rays surface inspection of sample sheets adsorbing radon progenies **S.S.** prays surrac 631*/*11. As a result, it was observed that the amount of radioactive concenι.3. β rays surface inspection of sample sheets adsorbing radon progenies $\overline{}$ ct where *C*(*t^j*) and *RBG* are the count rates of signal and background rate for 10

Interpretation

- (1) ²¹⁸Po only falls on the sample after the radon decay in the air. ²¹⁴Pb and ²¹⁴Bi ponential fitting. This indicates a fluctuation of the ratio of radon progenies produced at the sample.
- (3) $(218D_o$ $(214D_b 20d)$ $(14D_c + b_o 20d)$ $(16D_c 20d)$ (2) ²¹⁸Po, ²¹⁴Pb, and ²¹⁴Bi in the air fall the lifter the radon decay in the air sample after the radon decay in the air.

3. Background study of environmental radiation $\mathcal{F}_{\mathcal{A}}$, result of the $\mathcal{B}_{\mathcal{A}}$ rays inspection. The time spectrum of count rates for the time spectrum of the time spectrum of the time spectrum of count \mathcal{A}

3.3. β rays surface inspection of sample sheets adsorbing radon progenies ADSORBING RADON PROGENIES where *C*(*t^j*) and *RBG* are the count rates of signal and background rate for 10 .
8. β-RAYS SURFACE INSPECTION OF SAMPLE SHEETS : Sileets ausorbing r $\frac{1}{1}$ 90 $\frac{1}{\sqrt{2}}$ י sorbing radon progenies

in Fig. 3.8, respectively. This result suggests to reject the ²¹⁸Po only falling ronmental radiation. Because, the 21 3. Background study of environmental radiation $\mathcal{F}_{\mathcal{A}}$, result of the $\mathcal{B}_{\mathcal{A}}$ rays inspection. The time spectrum of count rates for the time spectrum of the time spectrum of the time spectrum of count \mathcal{A}

 T is suggested a potential that therefore, it is suggested as potential that there are no only 218 3.3. β rays surface inspection of sample sheets adsorbing radon progenies ADSORBING RADON PROGENIES where *C*(*t^j*) and *RBG* are the count rates of signal and background rate for 10

3. Background study of environmental radiation

3.3. β rays surface inspection of sample sheets adsorbing radon progenies

Result

- It was found that radon progenies of (17.9 \pm 0.5) Bq/m² were attached to the sample sheets.
- \cdot ²¹⁴Bi on the sample is not negligible, and it is required to not expose sample into the air.
- This result suggested to reject the scenario in the case of $218Po$ only fallingon the sample after the radon decaysin the air.
- Therefore, it is suggested that there are the radon progenies in the air Indirectly.
- The suggestion could be a clue for a search of the lung cancer occurring in non-smokers from the impact and exposures by inhalation ofthe radon progenies.

4. Design of a prototype detector

de norign of 2.0411, notative inductor 4. Design of a prototype detector

4.1. Threshold-type Cherenkov counter

PMT

R9880U-210

of a sheet made of scintillating fibers (Kuraray Scintillating fibers (Kuraray Scintillating fibers (Kuraray S diameter with only small energy loss of the β rays emitted from ⁹⁰Y in the

4. Design of a prototype detector $\mathbf{f}_{\mathbf{f}}$ fibers. The $\mathbf{f}_{\mathbf{f}}$ for the environment background measureeffective area was 300 \pm 100 \pm

4.2. Trigger counter

The number of photoelectrons

4. Design of a prototype detector $\overline{\mathbf{v}}$ and the vertice consists of two units. Each unit has one top side to single system in the side one top si

4.3. Veto counter and one short side counter counters, and one short side counter.

 $\mathfrak l$ $\textcircled{\small{13}}$ Short side $\textcircled{\small{2}}$ Long side $\textcircled{\small{14}}$ $\textcircled{\small{3}}$ Top side 50 mm 50 mm 50 mm 200 mm PMT: H11934-200 **Total Contract Contract** \sim 11 \sim 11 \sim $\mathcal{Y}\times\mathcal{Y}\times\mathcal{Y}$ \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \angle // / 11, Double Cladding) - WLSF (Y \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow mm $\mathbb{R}\times\mathbb{Z}$ \diagdown $\mathcal{L}(\mathcal{L})$ variety is a set of $\mathcal{L}(\mathcal{L})$ 信 新 封 イ マ マ マ マ マ 第 ジョ マ イ ア 図 200 mm 10 mm 15 mm 50 mm 50 mm 20 mm The veto counter unit (1) Short side 2 Long side 3) Top side $y \sim \frac{x}{2}$ Y-11

H11934−200

- **Photocathode**
	- \Box 23 mm
	- Ultra Bialkali
- Metal Channel Dynode

4. Design of a prototype detector and generate $\frac{1}{\frac{2 \text{ long side}}{3 \text{ long side}}}$

4.3. Veto counter

 $^{\rm c}$ mm 0S×00S×248 \approx ト $^{\rm c}$ か打面表暗 \perp 。六J情號ず榭士 τ ぶりI図コ(&うるす気拳塗塗機出錬⊙ \perp

1.5 Shielding by Shielding Text of Text of Text of Text of Text of Text of Text of Text of Text of Text of Te

T , we detector was shown by lead and brass blocks for the theoretical 4. Design of a prototype detector

$\frac{1}{2}$ the detector. On the short sides, lead blocks with 50-mm thickness with 50-mm thickness with 50-mm thickness w 4.5. Shielding by lead and brass blocks

5. Performance of the prototype detector

个文学的文学的文学的文学的文学的文学的文字,这样的文件是否实现象的文件,也就是这样的文件,这样的文件是否是否是否是否是否是否是否是否是否是否是否是否是否是否

5. Performance of the prototype detector *the mean vertormance of the prototype detector*

5.1. Radioactivity of sources *NSR ≥ 20SR ≠ 20SR ± 0.01* $\frac{1}{2}$ 0.11 $\frac{1}{2}$ 0.125 $\frac{1}{2}$ 0.125 $\frac{1}{2}$ 0.125 $\frac{1}{2}$ 0.15 $\frac{1}{2}$ 0.15 $\frac{1}{2}$ 0.15 $\frac{1}{2}$ 0.15 $\frac{1}{2}$ 0.15 $\frac{1}{2}$ 0.15 $\frac{1}{2$

```
<sup>90</sup>Sr source \ldots 23.6 \pm 0.3 kBq
^{137}Cs source … 26.0 \pm 0.5 \text{ kBq}delivered by Japan Radioisotope Association .
```

```
<sup>40</sup>K source … 498 ± 2 Bq in potassium chloride (KCl).
The KCl with a mass of 30.0 \pm 0.1 g.
A purity of \gtrsim 99.5\%.
```
5.2. Counting rate

5. Performance of the prototype detector ance of the pr

5.3. Signal model

The ratio of the events above the threshold in total signals was defined as 5. Performance of the prototype detector

5.5. Detection efficiency and limit

- Mean counting rate is 74.9 h⁻¹ using 10-Bq ⁹⁰Sr in the signal model.
- The source position dependence for the coefficient *k* was corrected.
- In a case of 3σ threshold setting, this detection eff. is estimated to be $91.6 \pm$ 0.3% for 10-Bq 90 Sr.
- These curves show relations between ⁹⁰Sr radioactivity and the efficiency for $1, 2, 3\sigma$ threshold condition.
- Typical detection limit is determined to be $A_{3\sigma}^{50\%}$ satisfying $\langle \Gamma_{\rm Sr}(n) \rangle > \langle \Gamma_{\rm BG}(n) \rangle + 3\sigma$.

•
$$
A_{3\sigma}^{50\%}
$$
 = 4.6 Bq at 1-hour measuring.

53

5. Performance of the prototype detector

5.6. Concentration

```
Detection limit of surface concentration is
A_{3\sigma}^{50\%}/S = 0.0153 Bq/cm<sup>2</sup>, where S = 300 cm<sup>2</sup>.
```
Here, it is assumed that

- Density of sample is $1 g/cm³$
- Sample was dried.
- Compression factor is $\varepsilon = 0.3$
- Sample thickness is 1 mm

- Sample weight is $m = 30$ g (corresponding to the original of $m/\epsilon = 100$ g).

 $A_{3\sigma}^{50\%}$ m ε^{-1} = 46 Bq/kg

at 1-hour measurement.

The food contamination permissible limit of 100 Bq/kg defined by Ministry of Health, Labour and Welfare, Japan, in 2012.

 $A \propto S^{-1}$; it expected to be 8.4 Bq/kg @S=1 m²

Furthermore, in the case of seawater, the lower limit of dried seawater in 1-hour measurement is estimated to be $A_{3\sigma}^{50\%}$ m $\varepsilon^{-1} = 1.5 \text{ Bq/L}$, where $\varepsilon = 0.01$.

5. Performance of the prototype detector

5.6. Results

- Signal models were developed based on experimental test using the sources.
- The efficiency curves were estimated as the detector performance.
- The detection limit was estimated to be 4.6 Bq.
- The detection limit of surface concentration was estimated to be 0.0153 Bq/cm².
- The detection limit of weight concentration was estimated to be 46 Bq/kg (seafood) and 1.5 Bq/kg (seawater) at 1-hour measurement in the prototype detector.

6. Summary

- It is important to measure 90 Sr concentration in food because intake of 90 Sr is dangerous than $137Cs$, and the method of measuring $90Sr$ rapidly is focused.
- Wavelength-shifting fiber system was adopted because it is not possible to inspect 10-Bq/kg ⁹⁰Sr by a large PMT reading Cherenkov photons directly.
- The light collection efficiency was estimated to be 1.0-1.4% for Cherenkov photons.
- The Cherenkov photons by $90Y$ β rays was observed using the fibers.
- 214Bi as the radon progenies in the air was not observed in the limit of 100 Bq/m³. The radon progenies on the sample sheets was not observed 18 Bq/m². It was found that the detector design should be performed the care for these ²¹⁴Bi.
- I produced a prototype detector with an effective area of 30×10 cm².
- The detection limit of weight concentration at 1-hour measurement was estimated to be 46 Bq/kg (seafood) and 1.5 Bq/kg (seawater). By extending to effective area of 1 m^2 , it is expected to be 8.4 Bq/kg (seafood).

Acknowledgement

I thank to **Prof. Hideyuki Kawai** of Chiba Univ. for providing not only this study but also various precious experiences for a long term of 5 years.

I thank to **Prof. Sigeru Yoshida**, and **Asst. Prof. Keiichi Mase** of Chiba Univ. for providing a chance of this study.

I thank to **Dr. Makoto Tabata** of Chiba Univ. for providing silica aerogel tiles, teaching how to research, and suggesting in this study.

I thank to **Prof. Jun Imazato** and **Dr. Yoichi Igarashi** of High Energy Accelerator Organization (KEK), Japan, **Prof. M. D. Hasinoff** of Univ. of British Columbia, Canada, **Asst. Prof. Suguru Shimizu** and **Dr. Keito Horie** of Osaka Univ., Asst. **Prof. Takatugu Ishikawa** of Tohoku Univ. for grate advices and suggestions.

I thank to **Mr. Satoshi Kodama**, **Mr. Munetaka Nitta**, **Mr. Atsushi Kobayashi**, **Mr. Takahiro Mizuno**, **Mr. Hiroyuki Kobayashi, Mr. Taichi Nakamura, Mr. Yusaku Emoto**, **Mr. Shota Kimura**, **Mr. Kenta Fujihara**, and **Mr. Kentaro Kurusu** of our good laboratory members in Chiba Univ., for their cooperation.

Finally, I thank to my friends and my family for their special supports.