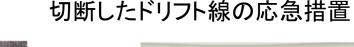
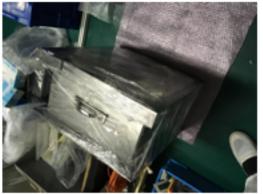

Low-alpha 0.3 a Progress


Hiroshi Ito 2018.03.06


- 8:20 入坑
- 0.3a電源ON
- 8:25 チェックシート
- 8:32 純空気封入
- 8:40 サスふたオープン 上ネジ、蝶番、
- 9:10 SUS蓋 取り外し 一人で持ち上げる:めっちゃ重い プチプチの上に置いて、ラッピング
- 9:39 SUS筒 取り外し プチプチの上に置いて、ラッピング
- 10:47 テフロン取り外し
- 11:30 フランジ交換(with 橋本)
- 15:34 HV線取り替え
- 15:45 通電チェック
- 16:00 テフロン取り付け
- 16:30 出坑

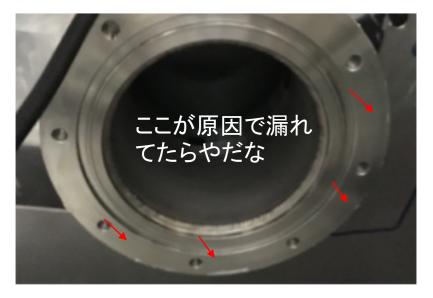
NEWAGE-0.3a 運転チェックリスト ver 2.2								
記入時刻:	2018 年	2月27日	8:25	記入者:	伊藤博士			
項目	備考	值1	正常值	值2	正常値			
ラドン濃度		60-70 Bq/m3	50~					
気温(モニタにて)	room/AMP	26.3℃	0:00-8:00 26.2-26.4で安定					
相対湿度		25.1%	0:00-8:00 δ=-1.0%(減少傾向)					
WEBアドレス: http://133.11.177.173								
ガス圧力	TPC/ボンベ	1.96 E4Pa	2E4Pa	7.0 Mpa	0.2MPa以上			
流量	ボール流量計	ml/min						
アノード	CAEN N1471	0 V	設定値	0 μΑ	2000nA以下			
GEM上	REPIC RPH-033 ch1	V	設定値	μΑ	6μA程度			
GEM下	REPIC RPH-033 ch2	V	設定値	uA	5μA程度			
ドリフト	LED表示	0 kV	設定値	0 μΑ	設定値			
高圧用電源	PMM24-1QU	0V	24V	0.0 A	0.1A以下			
エンコーダ電源	PAN16-10A	0 V	3.3V	0 A	3.6A			
ASD電源(+3V)	PAS10-35(左)	0 V	3.45V	0 A	16.1A			
ASD電源(-3V)	PAS10-35(中)	0 V	3.25V	0 A	11.9A			
ASD電源(+3V)	PAS10-35(右)	0 V	3.4V	0 A	16.2A			
アナログ閾値	PLS706	-40.36 mV	設定値					
デジタル閾値	アノード側	-25.0 mV	-24.9 mV	-24.5 mV				
デジタル閾値	カソード側	45.20 mV	45.32 mV	45.11 mV				
HDD残量	容量/名前	95 GB	50GB以上	nadb23	設定値			

SUSふた、つつ 取り外し後ラッピング

ふた結構重かった

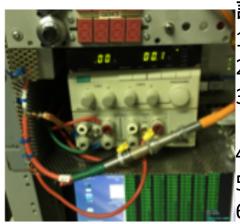
取り外したフランジ

つつは1人だと、たまにテフロンに 当たりそうになる。注意。 2人で持った方がリスクが低いかも



作業ログ詳細

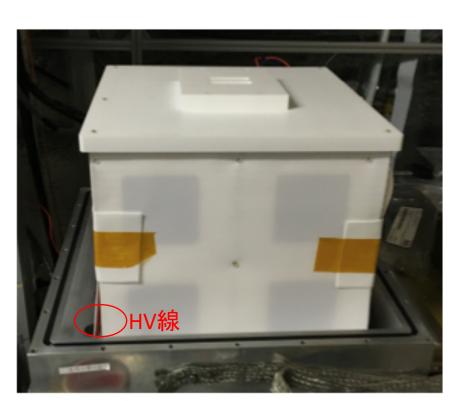
- 1. テフロン側面板外す
- 2. 最下層のドリフト線がテフロン板取り外しの際に断線
- 3. はんだで修正、通電OK (右上写真)
- 4. Drift、GEM HV線の丸穴コネクタ切断
- 5. フランジ取り外し、3本ケーブルとともにスルスル取り出す。熱収縮チューブがつっかえるので注意。


(2人でやると、上で押し込み、下で引っ張り作業が楽)

取り外したフランジの断面が汚い

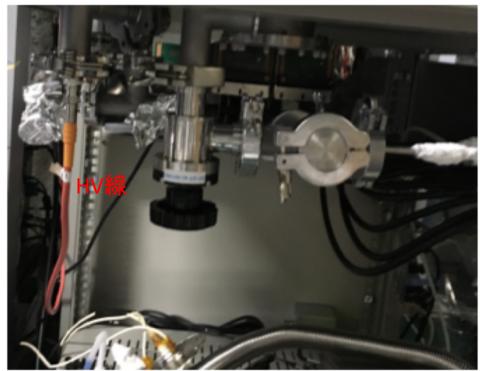
Drift HV線の取り付け

一応、アルコール+キムワイプで拭いて からメクラ・フランジに据え替え



詳細ログ

- 1. NW25+SHVコネクタとDrift HV線の圧着
- 2. 丸コネクタ、HV線反対側に圧着
- 3. クランプで取り付け(圧力計配管ライン) (左下写真)
- 4. 安定電源からのケーブルをSHVに接続
- 5. GEM1 SHVケーブルを流用
- 6. 通電チェック OK


出坑時 状況

テフロン板、ふたをかぶせた

圧力計の 配管周り

圧力計配管をT字管に変えて取り付け

坑内作業2日目

- 8:20 入坑
- テフロン板取り付け:ネジ閉める(今回は全部締まった)
- 8:32 スペーサー、
- 8:39 SUSつつ取り付け、スペーサーとつつの間ネジが閉まらない、なぜ?
- 9:32 解決
- 9:57 ふた 取り付け ネジしめる 蝶番とステー治具はまだ
- 10:10 配管取り付け
- 10:44 リークチェック、活性炭容器バルブは閉じている状態にしてる チェック箇所:フランジ接着面、活性炭までの配管接続部 … 問題なし

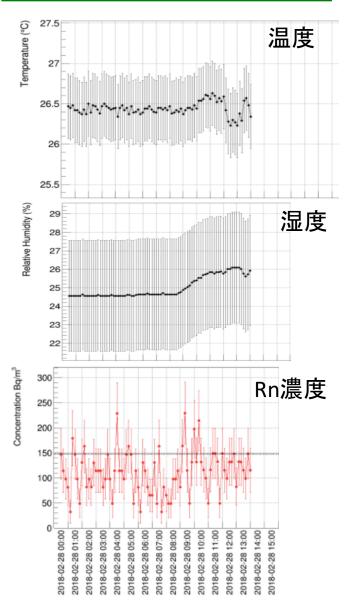
Lab-A Heボンベ2本在庫あり

7

DAQエリアの裏側

クリーンルーム・ビニール直し

剥がれていたビニールを修復した。

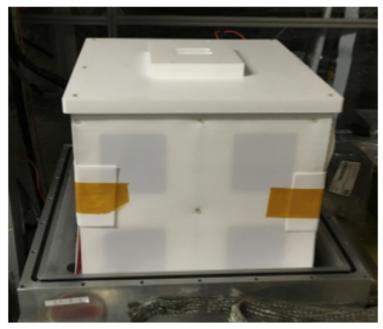

- そのまま真空引き続ける
- 14:31 循環ポンプのIN接続部にもれあり…きつく締めて再度チェック
- 14:58 フラッシュ、真空引き
- <u>CF4レギュレーターが悲鳴をあげている</u>
- エンコーダー、ASD, HV電源ON
- ドリフト電圧、2kVで放電?NWに生えているSHVコネクタを外してチェック=>5kVまでかかった。

おそらく、容器内で放電してるだろう

2kVでDAQ走らせよう

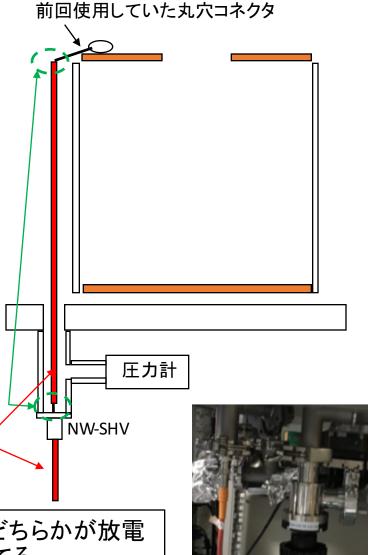
- CAEN HV 500 V印加、チェックリスト
- 15:57 DAQ start

坑内作業2日目



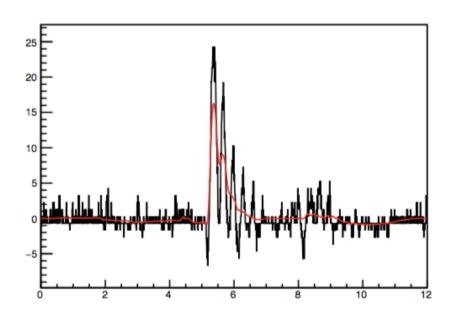
NEWAGE-0.3a	運転チェックリ	ノスト ver 2.2
-------------	---------	--------------------

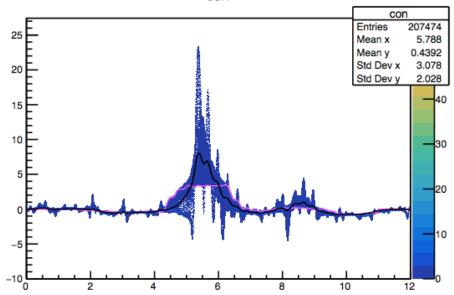
INLVVAOL-0.3d 注私/エノ/プスト VCI 2.2								
記入時刻:	2018 年	2月28日	15:28	記入者:	伊藤博士			
項目	備考	值1	正常値	值2	正常値			
ラドン濃度		110 Bq/m3	50~					
気温(モニタにて)	room/AMP	26.3℃	0:00-11:00まで安定,11時から挙動変					
相対湿度		26.0%	9時ごろから湿度上昇 +1.5%					
WEBアドレス: http://133.11.177.173/cgi-bin/								
ガス圧力	TPC/ボンベ	1.99 E4Pa	2E4Pa	7.0 Mpa	0.2MPa以上			
流量	ボール流量計	200 cc/min						
アノード	CAEN N1471	500 V	設定値	2.16 μΑ	2000nA以下			
GEM上	REPIC RPH-033 ch1	V	設定値	μΑ	6μA程度			
GEM下	REPIC RPH-033 ch2	V	設定値	uA	5μA程度			
ドリフト	LED表示	2.00 kV	設定値	6.7 μΑ	設定値			
高圧用電源	PMM24-1QU	24.0 V	24V	0.0 A	0.1A以下			
エンコーダ電源	PAN16-10A	3.26 V	3.3V	3.42 A	3.6A			
ASD電源(+3V)	PAS10-35(左)	3.68 V	3.45V	14.38 A	16.1A			
ASD電源(-3V)	PAS10-35(中)	3.17 V	3.25V	10.87 A	11.9A			
ASD電源(+3V)	PAS10-35(右)	3.70 V	3.4V	13.53 A	16.2A			
アナログ閾値	PLS706	-40.36 mV	設定値					
デジタル閾値	アノード側	-25.0 mV	-24.9 mV	-24.5 mV				
デジタル閾値	カソード側	45.20 mV	45.32 mV	45.11 mV				
HDD残量	容量/名前	41 GB	50GB以上	nadb23	設定値			


坑内作業2日目

ドリフト線が放電してる可能性

カプトンで覆う NW-SHV

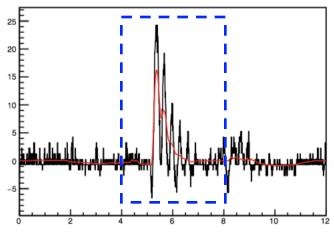

カプトン覆ったどちらかが放電 してると推察してる

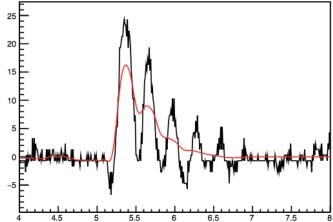


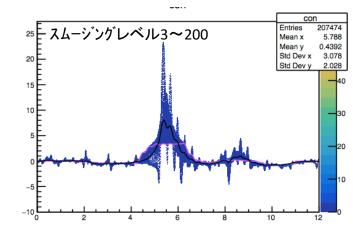
2018/01/30 フーリエ解析で高周波成分カットを試みた。ノイズ成分は減るが、信号成分が鈍り前後判定に使えなくなる。

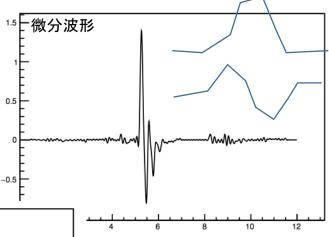
2018/02/06 波形絶対値との差分からS/Nを識別可能。スムージングのアプローチは良さそう

2018/02/22 スムージングした後、信号領域において、スムージングレベル ごとに微分波形をチェックして、ベストなレベルを決定してノイズを 落とすことに成功。

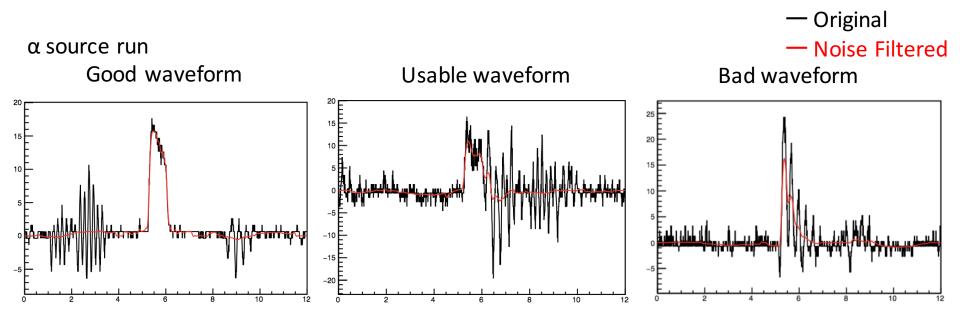


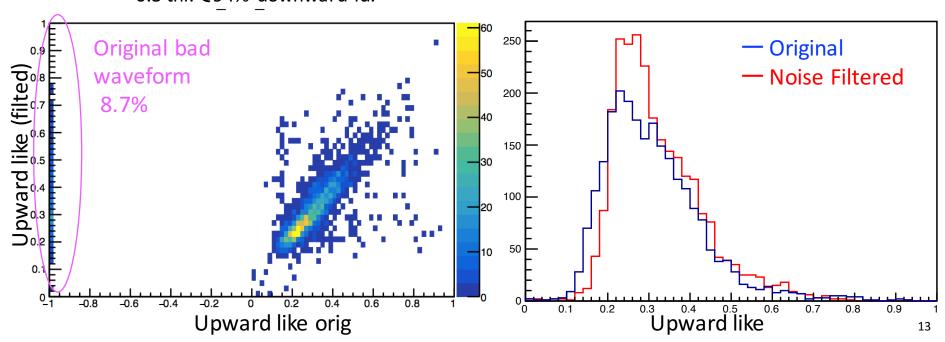



アルゴリズム


- 1. スムージング波形 3~200 分割 (Rebinとは違う) 領域200の平均値をplotしながら、平行移動する スムージングレベル3~200の波形の平均波形が黒 スムージングレベル200の波形がマゼンタ
- 2. マゼンタ有効領域が信号があると判断
- 3. スムージングレヘル毎に微分波形をチェック
- 4. sin波-like 1周期以下を満たすスムージング゙レベルを決定。
- 5. 信号領域において決定されたスムージングレベルに調節。
- 6. ノイズ領域はスムージングレベル200にしている。

この手法で信号に雑音が入っても雑音だけを除去できる。

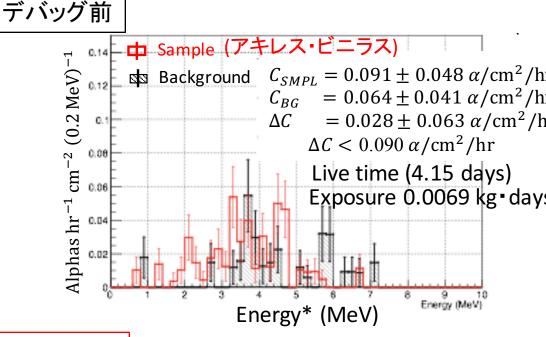



ノイズフィルター開発

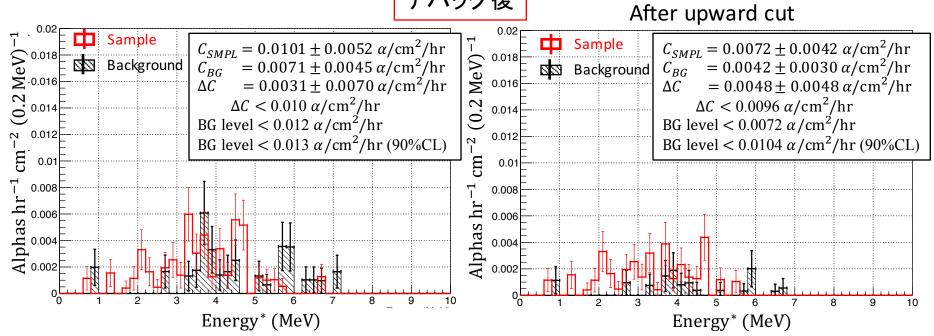
- 波形に電磁ノイズが乗ることで前後判定に悪影響
- ・ 波形スムージングと微分波形解析を組み合わせたアルゴリズムを開発
- Good波形を崩さず、Bad波形を生き返らせることに成功

ノイズフィルター開発

- Bad waveform (全体の8.7%)を救えた。
- Upward like分布ピークは鋭くなった。
 - 飛跡がμ-PICに触れた時刻(下向きα線の波形peak time)は原理的に揃ってる。
 - 雑音によって生じたpeak timeのずれが治ったと理解できる。
- ノイズフィルター操作後のUpward IDは変化しない。
 - 0.5 thr.で94% downward id.

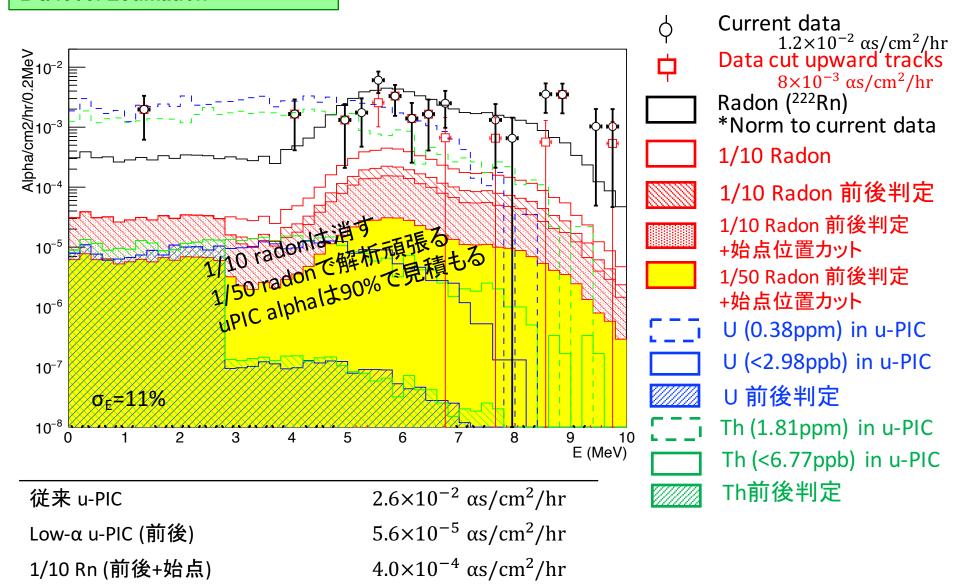


解析ツールデバッグ結果修正


ばぐ: count rate計算時の面積あたりを fidutial area 9cm x 9cm 次元1回しかかけてなかった

As/hr/cm2 = Cnts/ Live T / fid. Area

つまり、factor 9良くなる 他のデバッグも…


デバッグ後

BG level Estimation

1/50 Rn (前後+始点)

Low-α u-PIC + 1/50 Rn(前後+始点)

 $9.5 \times 10^{-5} \text{ } \alpha \text{s/cm}^2/\text{hr}$

 $1.5 \times 10^{-4} \text{ as/cm}^2/\text{hr}$

2018年3月5日

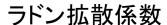
BG level Estimation

Radon 10-2ってなんだ? uPIC以外のメイン材料 ... テフロン 6 kg

 238 U 0.03 ppm = 1.24e4 Bq/g x 0.03e-6g/g $^{\sim}$ 0.37 Bq/kg

Teflon 6 kg

Activity(U) ~ Activity(Rn)

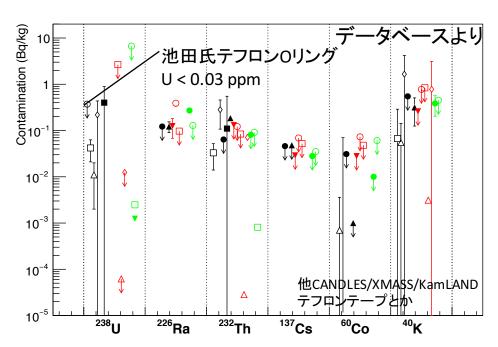

~ 0.37 Bq/kg x 6 kg

~ 2.2 Bq

2.2 Bq = 2.2 as/sec = 7,900 as/hr

面積比: 9x9 /30 x 30 = 81/900 = 0.27

平均 2,133 alphas/hr/cm2


 $D \sim 10^{-8} - 10^{-6}$

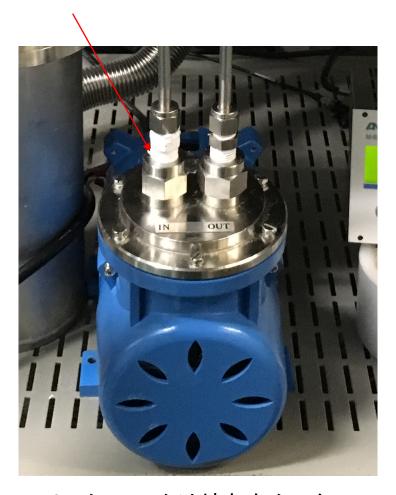
日本原子力学会和文論文誌 vol.7, No.3, p221 (2008)

vol.7, No.1, p1 (2008)

これで中心付近を計算で

10⁻² as/cm2/hrを説明できるか?

テフロン材料を変える

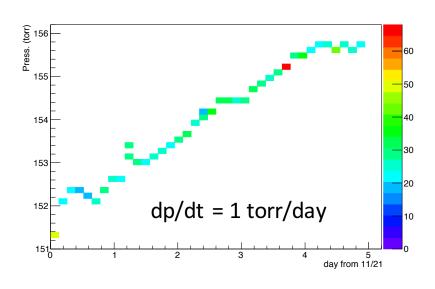

もっと強力に循環してRnを消す

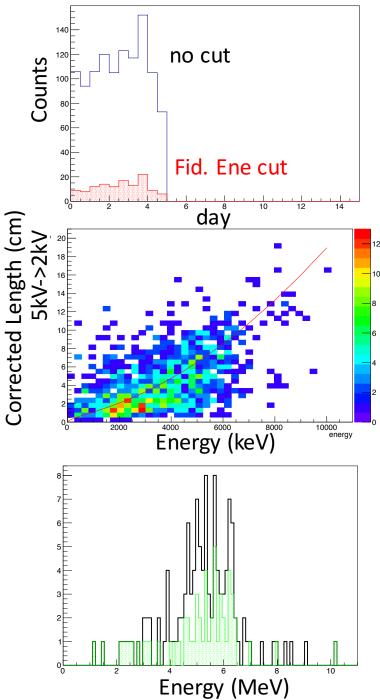
no => 違う素材が原因

2/28-3/5BG run 経過

Pressure: dp/dt ~ 1.2 torr/day 160 145 **CAEN Current** ここの挙動は変 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

ここが漏れてることはわかってる


活性炭バルブを両方締めれば、Heリークチェックは壊れなかった。 一応、メッシュOリングは使用すること! 次回、循環ポンプINの接続部の再接続を実施


前回セットアップ (11/30-12/2)

- 活性炭循環なし
- drift voltage 5 kV
- -新テフロン板交換前
- フランジ交換前

今回セットアップ(2/28-3/5)

- 活性炭循環あり
- drift voltage 2 kV
- 新テフロン板交換後
- フランジ交換後

今後の予定

- 3/7-9 LBGT
- 活性炭バルブ閉じてBG runスタート
 - 3月中旬(12の週) <=ガス交換、バルブV1, V11閉、循環ポンプ止め、DAQスタート
 - 循環ポンプINスエジ・再接続+リークチェック
- ・3月下旬Am241ソースを池田氏から拝借
 - a-source Cu plate Calibration
- 4月以降
 - Drift線の復旧 … 放電解消
 - 活性炭あり・なし検証
 - a-source Calibration run ··· Energy resolution, efficiency, drift & anode voltage optimization, Gas pressure optimization, etc.
 - 活性炭冷却の導入
 - DAQ mode3 -> mode5