Low-alpha 0.3 a Progress

Hiroshi Ito 2018.10.18

Contents

- 1. 10/10 兼好さん線源手作り体験
- 2. 10/11-12 坑内作業
- 3. 解析進捗
- 4. サンプルホルダー設計
- 5. 今後の予定

2018年10月10日(水)

坑内作業(0日目)アルファ線源手作り体験

場所 Lab-1の通路 ソース銅板 サイズ 5.0x2.5x0.2 cm³ ANDRY 印加電圧: -1.0 kV 開始時刻: 2018/10/10 15:22 ラドン濃度: 約900 Bq/m³ 2015.5.2 ~ 149672 ファンがついていて、ラドンを できるだけ集める(あまり意味 がなさそうとも言っていた) IIIII ス板はここに入 れる Ho MATTA 100

2

坑内作業(1日目)

- •8:50入坑
- ・8:59 チェックシート記入

NEWAGE-0.3a 運転チェックリスト ver 2.3							
記入時刻:	2018 年	10月11日	8:50	記入者:	伊藤博士		
項目	備考	值1	正常值	值2	正常値		
ラドン濃度		100 Bq/m3	50~				
気温(モニタにて)	room/AMP	28.55°C	相対湿度		32.6%		
WEBアドレス: <u>http://133.11.177.173/~radon/cgi-bin/</u>							
ファン	NIM ファン	ON	ASD ファン	ON			
ガス圧力	TPC/ボンベ	2.19 E4Pa	2E4Pa	9 MPa	0.2MPa以上		
	純空気ボンベ	8.1 MPa	2E4Pa				
流量	ボール流量計	>300 cc/min	活性炭	ON			
アノード	CAEN N1471	550 V	設定値	1.450 μA	2000nA以下		
GEM上	REPIC RPH-033 ch1	V	設定値	μΑ	6μA程度		
GEM下	REPIC RPH-033 ch2	V	設定値	uA	5µA程度		
ドリフト	LED表示	2.50 kV	設定値	8.3 µA	設定値		
高圧用電源	PMM24-1QU	24.0 V	24V	0.0 A	0.1A以下		
エンコーダ電源	PAN16-10A	3.27 V	3.3V	3.41 A	3.6A		
ASD電源(+3V)	PAS10-35(左)	4.29 V	3.45V	18.19 A	16.1A		
ASD電源(-3V)	PAS10-35(中)	3.68 V	3.25V	12.56 A	11.9A		
ASD電源(+3V)	PAS10-35(右)	3.91 V	3.4V	15.62 A	16.2A		
アナログ閾値	PLS706	-40.67 mV	設定値				
デジタル閾値	アノード側	-28.49 mV	20.76 mV	-24.69 mV			
デジタル閾値	カソード側	43.38 mV	40.42 mV	42.85 mV			
HDD残量	容量/名前	1.1 TB	50GB以上	nadb23	設定値		

坑内作業(1日目)

9:01 DAQ STOP per15

HV down

9:07 純空気IN

9:13 ふたopen

9:24 線源セット、どうメッシュ外して、そのまま はめた。中央穴の爪に引っかかって固定され ている。mcに反映しよう。

9:40 ふたclose, ふたねじにMoを付着 9:41 真空引き開始

10:10 取っ払ったメッシュの高さは3 mm

10:10 CF4 flush

10:20 CF4 1.97 E+04 Pa

10:21 Hvup anode 550V(), drift 2.5kV()

ASD Cathode1 threshold 42mV=> 45.25mV 10:31 per1 dag start

兼好さんに確認したUltraloで 頻度 53.8 ± 0.4 alpha/cm²/hr (1.49 ± 0.01 alpha/sec) @ 4.8 < E < 5.8 MeV

坑内作業(1日目)

10:49 per1 daq stop (20data/file) データ格納場所間違えていた。 ~/30LAuPIC_1/20181011に移して 10:49 per2 daq start (20data/file) 1 fileあたりのデータ数少ないから、 デッドタイム増えちゃう 10:55 per3 daq start (100data/file)

14:30 quick解析 15:20 出坑

坑内作業(1日目) quick monitor 1

エネルギー5.3MeVに ピークあるね

坑内作業(1日目) quick monitor 2

- Nhit=0のエネルギー分布 はnhit>3と形同じ。
- 減り具合(8.12%)
- 前回runと比べて約2倍 countしている。メッシュ とって、近づけたから?
- cosθ分布は解析アルゴリ ズムのバグがあった

Nhitと角度相関は前回runと再現した

2018年10月12日(金)

坑内作業(2日目)

- •8:30入坑
- ・8:33 チェックシート記入

NEWAGE-0.3a 運転チェックリスト ver 2.3								
記入時刻:	2018 年	10月12日	8:33	記入者:	伊藤博士			
項目	備考	值1	正常値	值2	正常値			
ラドン濃度		100 Bq/m3	50~					
気温(モニタにて)	room/AMP	28.5°C	相対湿度		33.5%			
WEBアドレス: <u>http://133.11.177.173/~radon/cgi-bin/</u>								
ファン	NIM ファン	ON	ASD ファン	ON				
ガス圧力	TPC/ボンベ	1.97 E4Pa	2E4Pa	9 MPa	0.2MPa以上			
	純空気ボンベ	8.1 MPa	2E4Pa					
流量	ボール流量計	>300 cc/min	活性炭	ON				
アノード	CAEN N1471	550 V	設定値	1.450 μA	2000nA以下			
GEM上	REPIC RPH-033 ch1	V	設定値	μΑ	6μA程度			
GEM下	REPIC RPH-033 ch2	V	設定値	uA	5µA程度			
ドリフト	LED表示	2.50 kV	設定値	8.4 μA	設定値			
高圧用電源	PMM24-1QU	24.0 V	24V	0.0 A	0.1A以下			
エンコーダ電源	PAN16-10A	3.27 V	3.3V	3.32 A	3.6A			
ASD電源(+3V)	PAS10-35(左)	4.29 V	3.45V	18.29 A	16.1A			
ASD電源(-3V)	PAS10-35(中)	3.68 V	3.25V	12.55 A	11.9A			
ASD電源(+3V)	PAS10-35(右)	3.91 V	3.4V	15.55 A	16.2A			
アナログ閾値	PLS706	-40.67 mV	設定値					
デジタル閾値	アノード側	-28.33 mV	20.79 mV	-24.55 mV				
デジタル閾値	カソード側	46.13 mV	40.31 mV	43.12 mV				
HDD残量	容量/名前	1.1 TB	50GB以上	nadb23	設定値			

2018年10月12日(金)

坑内作業(2日目)昨日からの線源RUN

2018年10月12日(金)

坑内作業(2日目)

13:40 per13 daq stop 14:00 HVdown, 純空気注入 14:05 ふたopen, サンプルuPICを入れる 14:10 ふたclose 14:11 真空引き開始 15:11 CF4 flush 15:10 CF4 1.96 E+04 Pa 15:15 Hvup anode 550V(), drit 2.5kV() 15:25 per14 daq start (20 data/file) 16:00 様子見 16:20 出坑

2018年10月15日(金)

モニター

解析: 10/11 Po210 alpha線源 run

解析: 10/11 Po210 alpha線源 run

問題発覚

- [Main] Energy が時間とともに増える!?
 - Gas gainが増えたことと同値!?なぜだー
 - ガス圧は?温度・湿度は?

(次ページにモニターkwsk)

- [Main] Count rateが揺らぐ!!
 - ガス循環でcount rate decayは解決している
 - Slow monitorでは1.8-2.0Hzで安定してたのに
 - File1の時刻とcount rate境目は関係ある?
 - DAQ不安定の問題の可能性か?
 - ノイズレベルで変わる可能性は?
 - PC CPU圧迫具合は?
- [Minor] alpha mapがsample regionより若干右上に シフトしている
 - 電場構造が傾いているか

明らかにサンプル領域に信号がいるぞ!!やったー

解析: 10/12 uPIC sample run

(Sample run) Count = 221 ± 15 Time = 67.35 hr Sample area = 9.5×9.5 cm2 Live/real=0.9997Rate = $(3.63 \pm 0.24) \times 10^{-2}$ counts hr⁻¹cm⁻²

(BG run) Count = 167 ± 13 Time = 91 hr Sample area = $9.5 \times 9.5 \text{ cm}2$ Live/real=0.9997Rate = $(2.03 \pm 0.16) \times 10^{-2}$ counts hr⁻¹cm⁻²

(Difference) Rate = $(1.60 \pm 0.29) \times 10^{-2}$ counts hr⁻¹cm⁻²

解析: 10/12 uPIC sample run

(Sample run) Count = 177 ± 13 Time = 67.35 hrSample area = $9.5 \times 9.5 \text{ cm}^2$ Live/real=0.9997 Rate = $(2.91 \pm 0.22) \times 10^{-2}$ counts hr⁻¹cm⁻² (BG run) Count = 125 ± 11 Time = 91 hrSample area = $9.5 \times 9.5 \text{ cm}^2$ Live/real=0.9997 Rate = $(1.52 \pm 0.14) \times 10^{-2}$ counts hr⁻¹cm⁻² (Difference)

Rate = $(1.39 \pm 0.26) \times 10^{-2}$ counts hr⁻¹cm⁻²

effはまだ問題があるが、50%と仮定すると uPICサンプルのalphaは2.77e-2 x 9.5^2 / 5^2 = 0.10 a/cm2/hr

解析: 10/12 uPIC sample run

オーダーは一致した。

FIGURE 4. Upper left : Accumulated image of α -ray tracks for a standard μ -PIC sample measurement. Upper right: Low- $\alpha \mu$ -PIC sample measurement. Lower: The red and blue histograms are the energy spectra for the sample and BG regions, respectively. The green histogram is a Geant4 simulation of α -rays from ²³⁸U and ²³²Th in the glass cloth inside the PI100 μ m insulator.

We obtained the count rates for the α -rays from the samples by subtracting the rate for the BG region rate from that for the sample region. The rate for the surface α -rays from the standard μ -PIC sample is 0.034 ± 0.009 [counts/cm²/h]. We evaluated the detection efficiency for surface α -rays as 0.159 ± 0.007 using Geant4, where the error is the systematic error due to the uncertainly in the glass-cloth thickness. The rate of surface α -rays from a standard μ -PIC sample is $0.28\pm0.12 \ [\alpha / cm^2/h]$. For comparison, the value determined from the HPGe measurements is $0.146\pm0.004 \ [\alpha / cm^2/h]$, where the error includes the systematic error due to the uncertainly in the glass-cloth thickness and the statistical error. These values are consistent at about the 1.1 σ level. The rate of surface α -rays for the low- α μ -PIC sample was analyzed in the same way as for the standard μ -PIC sample. No significant excess over the background was detected, setting a 90% upper limit of $7.55 \times 10^{-2} \ [\alpha / cm^2/h]$.

H. Takashi, et al., AIP conf. Proc. 1921, 070001 (2018).

どちらかというとHPGeに近い(まぁ今の所どうでもいいや) 結論:5cm x 5cm standard u-PICでも信号が見えた。やった一

Remind

アダプタを作ろう サンプルを置くときに距離があったら、effが落 ちるんじゃないの。 Effの角度依存性がありそう

毎回変わったら嫌だから、 ホルダーを作って、sys errorを減らさないと!

2018年10月18日

今後の予定

- 問題点
 - 配管漏れ(1.5torr/day)
 - Po-210長期runとってgain見てみたい(a few days)
 - nhit少ない事象:角度依存!?水平垂直軸よりに多い
 - ゲイン上昇問題
 - カウントrateガタガタ問題
- Po-210ソース手作り体験
 - 10/10~ with 兼好さん
 - ソースーつ回収、交換10/31あたり サンプルrun (数日)活性炭あり を走らせたい
- エネルギー較正位置一様性check <<解析でやること
- ・ シミュレーションの改善 << 解析でやること
- DAQモード変更 mode5へ

10/22 DAQ何ができるか議論 10/24-26作業

- 配管補修: フレキシブルチューブ(1/4 inch) x 4確保
- DAQいじり、rateガタガタ問題解決
- 線源run 回してみる

9/28 Am-241持って帰った 作業 10/ 24-26 神岡 10/ 31-11/2 神岡 11/10-17 IEEE(シドニー)

