# NEWAGE 0.3a progress 2018.11.06 H. Ito

### Content

- 1) 11/1-2作業ログ (ガス圧安定したよw)
- 2) アルファ線源の解析色々
  - 1) アルファソースのalpha map(4回転事象sum)
  - 2) ゲイン上昇/減少問題:容器圧力とゲインの関係
  - 3) 角度分布について: 前回の宿題, cos θ 分布の崖について詳しく
  - 4) 検出効率
- 3) 壁染み出し問題

### 2018年11月1日(木)

## 坑内作業(1日目)



| NEWAGE-0.3a 運転チェックリスト ver 2.3                         |                      |             |          |           |          |  |  |
|-------------------------------------------------------|----------------------|-------------|----------|-----------|----------|--|--|
| 記入時刻:                                                 | 2018 年               | 11月1日       | 8:21     | 記入者:      | 伊藤博士     |  |  |
| 項目                                                    | 備考                   | 值1          | 正常値      | 值2        | 正常値      |  |  |
| ラドン濃度                                                 |                      | 50 Bq/m3    | 50~      |           |          |  |  |
| 気温(モニタにて)                                             | room/AMP             | 28.35°C     | 相対湿度     |           | 28.2%    |  |  |
| WEBアドレス: <u>http://133.11.177.173/~radon/cgi-bin/</u> |                      |             |          |           |          |  |  |
| ファン                                                   | NIM ファン              | ON          | ASD ファン  | ON        |          |  |  |
| ガス圧力                                                  | TPC/ボンベ              | 2.34 E4Pa   | 2E4Pa    | 7.2 MPa   | 0.2MPa以上 |  |  |
|                                                       | 純空気ボンベ               | 8.0 MPa     | 2E4Pa    |           |          |  |  |
| 流量                                                    | ボール流量計               | >300 cc/min | 活性炭      | ON        |          |  |  |
| アノード                                                  | CAEN N1471           | 0 V         | 設定値      | 0 μΑ      | 2000nA以下 |  |  |
| GEM上                                                  | REPIC RPH-033<br>ch1 | V           | 設定値      | μΑ        | 6μA程度    |  |  |
| GEM下                                                  | REPIC RPH-033<br>ch2 | V           | 設定値      | uA        | 5µA程度    |  |  |
| ドリフト                                                  | LED表示                | 2.50 kV     | 設定値      | 8.3 µA    | 設定値      |  |  |
| 高圧用電源                                                 | PMM24-1QU            | 24.0 V      | 24V      | 0.0 A     | 0.1A以下   |  |  |
| エンコーダ電源                                               | PAN16-10A            | 3.27 V      | 3.3V     | 3.36 A    | 3.6A     |  |  |
| ASD電源(+3V)                                            | PAS10-35(左)          | 4.29 V      | 3.45V    | 17.76 A   | 16.1A    |  |  |
| ASD電源(-3V)                                            | PAS10-35(中)          | 3.68 V      | 3.25V    | 12.27 A   | 11.9A    |  |  |
| ASD電源(+3V)                                            | PAS10-35(右)          | 3.91 V      | 3.4V     | 15.14 A   | 16.2A    |  |  |
| アナログ閾値                                                | PLS706               | -40.67 mV   | 設定値      |           |          |  |  |
| デジタル閾値                                                | アノード側                | -27.83 mV   | 25.39 mV | -25.16 mV |          |  |  |
| デジタル閾値                                                | カソード側                | 46.83 mV    | 45.18 mV | 43.96 mV  |          |  |  |
| HDD残量                                                 | 容量/名前                | 1.1 TB      | 50GB以上   | nadb23    | 設定値      |  |  |

#### 2018年11月1日(木)

## 坑内作業(1日目)

8:30 Lab1にガススプレーを借りに行く 8:42 Heリークチェッカー準備

HV down

真空引き

9:00 Heリークチェッカーに接続、起動 真空引き Heスプレーガンでチェック

活性炭周り異常ない
 スペーサーの隙間に信号あり
 10秒delayして信号くる
 正面中央
 ネジ締めて見て、再度挑戦、信号来ない
 9:35 一応全ての箇所確認、有意な信号なし

真空引き開始 (3 hr) 3 Paまで引けた

12:36 CF4 flush 0.50 E+04 Pa CF4 1.97 E+04 Pa 注入 HV up anode 550V(0.060uA) drift 2.5kV 8.3uA



12:50 per1 daq start Quick monitor 正常 16:20 出坑

## 坑内作業(2日目)

8:23 入坑
8:24 チェックシート記入
9:00 per9 daq stop
HV down
真空引き
9:10 Heチェッカー起動開始
9:18 Heチェッカー起動完了
9:27 Heチェッカー接続
Heガスで漏れ箇所確認

| NEWAGE-0.3a 運転チェックリスト ver 2.3                         |                      |             |          |           |          |  |  |  |
|-------------------------------------------------------|----------------------|-------------|----------|-----------|----------|--|--|--|
| 記入時刻:                                                 | 2018 年               | 11月2日       | 8:24     | 記入者:      | 伊藤博士     |  |  |  |
| 項目                                                    | 備考                   | 值1          | 正常値      | 值2        | 正常値      |  |  |  |
| ラドン濃度                                                 |                      | 68 Bq/m3    | 50~      |           |          |  |  |  |
| 気温(モニタにて)                                             | room/AMP             | 28.35°C     | 相対湿度     |           | 27.4%    |  |  |  |
| WEBアドレス: <u>http://133.11.177.173/~radon/cgi-bin/</u> |                      |             |          |           |          |  |  |  |
| ファン                                                   | NIM ファン              | ON          | ASD ファン  | ON        |          |  |  |  |
| ガス圧力                                                  | TPC/ボンベ              | 2.00 E4Pa   | 2E4Pa    | 7.2 MPa   | 0.2MPa以上 |  |  |  |
|                                                       | 純空気ボンベ               | 8.0 MPa     | 2E4Pa    |           |          |  |  |  |
| 流量                                                    | ボール流量計               | >300 cc/min | 活性炭      | ON        |          |  |  |  |
| アノード                                                  | CAEN N1471           | 550 V       | 設定値      | 0.045 μA  | 2000nA以下 |  |  |  |
| GEM上                                                  | REPIC RPH-033<br>ch1 | V           | 設定値      | μΑ        | 6µA程度    |  |  |  |
| GEM下                                                  | REPIC RPH-033<br>ch2 | V           | 設定値      | uA        | 5µA程度    |  |  |  |
| ドリフト                                                  | LED表示                | 2.51 kV     | 設定値      | 8.4 μA    | 設定値      |  |  |  |
| 高圧用電源                                                 | PMM24-1QU            | 24.0 V      | 24V      | 0.0 A     | 0.1A以下   |  |  |  |
| エンコーダ電源                                               | PAN16-10A            | 3.27 V      | 3.3V     | 3.33 A    | 3.6A     |  |  |  |
| ASD電源(+3V)                                            | PAS10-35(左)          | 4.29 V      | 3.45V    | 17.87 A   | 16.1A    |  |  |  |
| ASD電源(-3V)                                            | PAS10-35(中)          | 3.68 V      | 3.25V    | 12.30 A   | 11.9A    |  |  |  |
| ASD電源(+3V)                                            | PAS10-35(右)          | 3.91 V      | 3.4V     | 15.33 A   | 16.2A    |  |  |  |
| アナログ閾値                                                | PLS706               | -40.64 mV   | 設定値      |           |          |  |  |  |
| デジタル閾値                                                | アノード側                | -27.63 mV   | 25.22 mV | -24.89 mV |          |  |  |  |
| デジタル閾値                                                | カソード側                | 46.43 mV    | 45.58 mV | 45.06 mV  |          |  |  |  |
| HDD残量                                                 | 容量/名前                | 1.1 TB      | 50GB以上   | nadb23    | 設定値      |  |  |  |

### 坑内作業(2日目)

**NEWAGE-0.3a status monitor** 

created at 2018/11/02 08:32:47

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

![](_page_4_Figure_6.jpeg)

前回よりかは改善されたか? まだ漏れている。どこだよ!

![](_page_4_Figure_8.jpeg)

pressure

![](_page_4_Figure_9.jpeg)

![](_page_4_Figure_10.jpeg)

config file: monitor\_03a\_na16.cfg status data directory: /home/msgc/status rate data directory: /home/msgc/rate CAEN data directory: /home/msgc/CAEN\_status from 20181101 12:00 to 20181103 0

5

## 坑内作業(2日目)

9:31 リークチェッカー反応場所 V6 スエジ接続部 T字スエジのKOFLOC側 スペーサー2と1の間

なんで、昨日は見えなかったかというと、一回大きな信号が観測されたあと リークチェッカーの感度が悪くなるから、小さな信号は見えなかった。

9:55 V2, V6, V7, V10, V11閉じて純空気入れる。
10:30 SUSふた、つつopen、サンプル交換 従来uPICを入れた。
11:40 スペーサー念入りにアルコール・キムワイプで拭く
12:00 つつ、ふたclose
12:15 真空리きV0 V2 open

12:15 真空引きVO, V2 open 10 PaになったらV6, V7, V10, V11 open Heリークチェッカーで再度スペーサー1と2の間(正面中央)を確認: 漏れありと確認 => 拭いてもダメだったわけだ

### 今度は、スペーサー1とつつの間はどうか?:漏れあり信号確認

### 坑内作業(2日目)

困ったのでスペーサー1と2の間、筒とスペーサー1の間にそれぞれの正面中央に 液体ガスケットで応急措置する。

- 13:00 V2, V6, V7, V10, V11閉じて純空気入れる。
- 13:20 SUSふた、つつopen
- 13:40 液体ガスケットをつける。
- 14:06 つつ、ふたclose
- 14:07 真空引きVO, V2 open 10 PaになったらV6, V7, V10, V11 open
- 14:40 Heリークチェッカーで再度スペーサー1と2の間(正面中央)を確認: OK 信号なし、 他は?確認されなかった。
- 15:00 真空引き
- 15:40 CF4 flush, CF4 1.97E+04 Pa HV up anode 550V (0.060uA), drift 2.5kV (8.3uA)
- 15:54 per 10 dag start (20 events/ file)
- 16:20 出坑

## 坑内作業(2日目)

11:00 @Lab-1 兼好氏とアルファ線源について話す。
 - サンプル線源作成の5cmx2.5cm銅板回収
 Lab-Aのラック2段目に収納
 - 15cm四方銅板設置@Lab-1

![](_page_7_Picture_3.jpeg)

![](_page_7_Picture_4.jpeg)

帰ったらやらなくちゃいけないこと

- 検出効率の見積もりをしっかりすること
- 角度分布-1<cosθ<1で見てみよう
- エネルギー減衰とガス圧の関係をしっかりする。
- 壁効果について検討する

#### 2018年11月3日

モニター

![](_page_9_Figure_2.jpeg)

![](_page_10_Figure_0.jpeg)

• 0.3aのアルファ線のposition sensitiveを実証した。

#### 2018年11月5日

## アルファ線源マップ結果

- 1. アルファ線マップはサンプルを上から覗き込 んで透かしたときの下面の汚染分布を示す。
- 2. 4つの回転したmapは補正されて全て同じ方 向を向く。
- サンプル領域(10x10cm<sup>2</sup>)で規格化 3.
  - 足し合わせるなら、イベントじゃなく、 レートで規格化しようか
  - YだけじゃなくXに射影したヒストも 作ってみよう
  - イメージングマップ見せるならBGを 差っ引かないといけないね。
  - BG runで差っ引いてみようか

![](_page_11_Figure_9.jpeg)

Anode

ʻ\_10

5

Cathode (cm)

2018年10月29日

## ゲイン上昇/減少問題:容器圧力とゲインの関係

## REMIND

![](_page_12_Figure_3.jpeg)

2018年11月5日

![](_page_13_Figure_1.jpeg)

2018年11月5日

ゲイン上昇/減少問題:容器圧力とゲインの関係

### まだ解析中

### アルゴリズム・デバッグ中

なんでゲイン上昇するの? uPICで誘電分極が起きている?ほんと? 0.3bではどうか?0.1cではどうか? 橋下uPIC gain測定で再現されるか? 時定数5時間は何が効いているの?

#### 2018年10月29日

### **Direction distribution**

# REMIND

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

cos(theta)

#### 2018年10月29日

### **Direction distribution**

# REMIND

![](_page_16_Figure_3.jpeg)

![](_page_16_Figure_4.jpeg)

sqrt(sin(theta)\*\*2) {energy>0 && anode\_c[1]>-5 && anode\_c[1]<5 && cathode\_c[1]>-5 && cathode\_c[1]<5}

![](_page_16_Figure_6.jpeg)

#### 2018年11月5日

cos θ 分布の崖にいて詳しく

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_0.jpeg)

φ

![](_page_19_Figure_0.jpeg)

条件: Nhit>10 chi2\_xz/nhit<0.01 chi2\_yz/nhit<0.02 chi2\_xy/nhit<0.02 sample region cut

alpha source was calibrated to  $1.49 \pm 0.01$  alpha/sec for 4.8-5.8 MeV using UltraLo-1800 alpha counter.

Mean of Live/real = 0.9997

Detection efficiency 5 ~ 1059/3600/115 20 25 ~ 0.2

![](_page_19_Figure_5.jpeg)

0 \_1.5

-1

-0.5

0

0.5

0

### What is error? Wait a minutes!

0

1.5

1

#### 2018年10月29日

2 4 6 8 10

REMIND

## 壁染み出し問題

![](_page_20_Figure_4.jpeg)

00

![](_page_21_Figure_0.jpeg)

#### 2018年11月6日

まとめ

### • 神岡作業でガス圧は安定させた。

- 今はuPICサンプルrun中
- アルファソース回転させた4run分足してマップを作った
- ゲイン減少とガス圧上昇は解析アルゴリズム・デバッグ
   中。ゲイン上昇の原因は不明。他のuPICでも再現するのか?
- 角度分布に関しては、飛跡フィットのbad eventによって構造が出ていた。
- 角度成分だけの効率は約30%
- カウントレートで効率はざっくり20%
- ・ 壁染み出しに関して、まだ解決してない。壁と中心でエネルギー分布が違うことまで進めた。一体何?ラドン・アルファ・ピークが見えた