Real-time ⁹⁰Sr Counter

Hiroshi ITO, Soorim Han, Naomi Kaneko, Hideyuki Kawai, Satoshi Kodama,

Atsushi Kobayashi, Makoto Tabata

Abstract-Radioisotopes have been emitted around Japan due to a nuclear accident at the Fukushima daiichi nuclear power station in March 2011. A problem is the contaminated water including the atomic nucleus which relatively has a long halflife time and soluble such as 90 Sr, 137 Cs. Internal exposures by 90 Sr are more dangerous than 137 Cs's because Sr has effective half-life time of 18 years and property of accumulation in a born. We have developed real-time ⁹⁰Sr counter which is sensitive beta-ray of maximum kinematic energy of 2.28 MeV from ⁹⁰Sr and insensitive of beta-ray of maximum kinematic energy of 1.17 MeV and gamma-ray from ⁹⁰Sr by Cherenkov detection. This counter composes of Cerenkov counter, trigger scintillation counter and veto counter. Silica aerogel for Cherenkov counter can obtain refractive index between 1.017 and 1.049 easily. And wavelength shifting fiber (WLSF) is used as a light guide for extending effective area and producing lower cost. A mechanism of the identification of ⁹⁰Sr is explained in following. In case of 90 Sr, when the trigger counter reacts on the beta-ray from 90 Sr, aerogel emits the Cherenkov light and WLSF reacts and read the Cherenkov light. On the other hand, in case of 137 Cs, the trigger counter reacts on the beta-ray, aerogel stops the betaray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Cosmic rays would be also reacted by the veto counter. A prototype counter whose the effective area is 30 cm imes 10 cm was obtained $(2.0 \pm 1.2)^3$ of mis-identification as ¹³⁷Cs/⁹⁰Sr. Detection limit in the surface contamination inspection depends on measurement time and effective area mainly. The sensitivity of wide range, $10^{-2} - 10^4$ Bq/cm², is obtained by adjustment of detection level in circuit of this counter. A lower radioactive sample ($< 10^{-2}$ Bq/cm²) allows be detected significantly by heating treatment to evaporate water shielding the beta-rays.

I. INTRODUCTION

I N march 2011, an accident at Fukushima daiichi Nuclear power station has been emitting about 900 PBq as a conversion of iodine with Internal Nuclear Event Scale (INESestimation) of the radioisotope into the atmosphere, which is equivalent to one sixth of the nuclear accident at Chernobyl

Naomi Kaneko, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (kaneko@hepburn.s.chiba-u.ac.jp).

Hideyuki Kawai, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (kawai@hepburn.s.chiba-u.ac.jp).

Satoshi Kodama, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (kodama@hepburn.s.chiba-u.ac.jp).

Atsushi Kobayashi, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (koba@hepburn.s.chiba-u.ac.jp).

Makoto Tabata, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (makoto@hepburn.s.chiba-u.ac.jp).

power plant. From the accident, a larger area (1800 km2) inside of Fukushima Prefecture in Japan has become to dangerous area when possible of emitting is 5 mSv/year or more [1].

Main radioisotope produced by nuclear reactor is known as ¹³¹I, ^{129m}Te, ²³⁸Pu, ⁹⁰Sr, ¹³⁴Cs, ¹³⁷Cs, ¹³³Xe, ¹⁰⁶Ru and so on. Just after the accident occurred, we had been careful about internal exposure at the thyroid gland by accumulating ¹³¹I through a breath, which has a short half-life (8 days). Currently in 2015, we are careful about exposure through the contamination water having ⁹⁰Sr, ¹³⁷Cs and so on, which have a long half-life.

A. The Risk of Contaminated Water

Atomic nuclear including in contaminated water by radioactivity are ⁹⁰Sr and ¹³⁷Cs mainly. ⁹⁰Sr is Alkali earth metal and has physical life-time of 29 years, biological life-time of 49 years and effective life-time of 18 years. On the other hands, ¹³⁷Cs is Alkali metal and has physical life-time of 30 years, biological life-time of 70 days and effective life-time of 70 days. When the nuclei is absorbed in the body, ⁹⁰Sr is accumulated into the born. In the case of ¹³⁷Cs, it is flowed out by the basal metabolism. The effective life-time τ_{eff} is defined as

$$\tau_{eff}^{-1} = \tau_{phys}^{-1} + \tau_{phys}^{-1}, \tag{1}$$

which τ_{phys} is physical life-time and τ_{bio} is biological life-time, and describes the incubation period in the body.

After the 90 Sr emitted into the sea, these accumulate into the sea foods. Therefore, we have dangerous to take them. Since of the 90 Sr's property accumulating into the born, they are accumulated 90 Sr depending on the period from the accident. A reference value of radioactivity which is included in the food has been defined as 100 Bq/kg by Health, Labour and Welfare phase, Japan in 2012.

B. Difficulty of Radioactivity Measurement

¹³⁷Cs has decay mode: (1) beta-ray of maximum 1.17 MeV and (2) beta-ray of maximum 0.51 MeV and gamma-ray of 0.662 MeV. Since of detection 0.662 MeV spectrum, ¹³⁷Cs is identifiable easily. In adding, since of gamma-ray's property of permeability, it is possible to suppress background from beta-ray of small energy by sheltering measurement. On the other hands, ⁹⁰Sr decays to ⁹⁰Y with beta-ray of maximum 0.55 MeV and ⁹⁰Y decays to ⁹⁰Zr with beta-ray of maximum 2.28 MeV. Beta-ray detection is only surface contamination inspection because it has less permeability. And in the case of environment existing ¹³⁷Cs, it is difficult to identify ⁹⁰Sr by background of ¹³⁷Cs's beta-ray.

Manuscript received April 6, 2015.

Hiroshi ITO, Graduate School of Science, Chiba University, Chiba, Japan, e-mail: (hiroshi@hepburn.s.chiba-u.ac.jp).

Soorim Han, Graduate School of Science, Chiba University, Chiba, Japan and National Institute of Radiological Science, Chiba, Japan, e-mail: (soorim@nirs.go.jp).

C. The inspection by chemical extraction

In conventional method, mount of 90 Sr in sample is estimated by chemical extraction. At first, pure strontiums are extracted from samples. Then, they are waited about a month to be a condition of radiative equilibrium. After becoming the condition, the mount of 90 Sr is estimated by measurement of 90 Y/ 90 Zr including the Strontiums. Therefore, this method has a long measurement time.

D. This study purpose

Since the above, a new device is required detection only ⁹⁰Sr, identifiable radiation over the limited 100 Bq/kg and measuring short-time. This article describes the design, construction, mechanism and performance estimation using radioactive source.

II. REAL-TIME ⁹⁰Sr Counter

We have developed 90 Sr counter which measures at shorttime or real-time (~ minutes) and identifiable 90 Sr in environment existing other radioation [2], [3]. This counter composes scintillating fibers trigger counter, Aerogel Cherenkov counter and cosmic ray veto counter. An event reacted only the trigger counter and the Cherenkov counter simultaneously is detected beta-ray from 90 Sr.

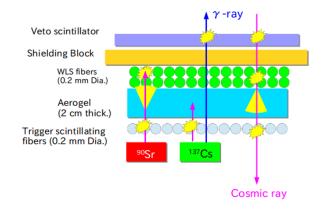


Fig. 1. Mechanism of real-time 90 Sr counter.

A. Scintillating fibers trigger counter

A trigger counter should have thinner type to loss energy of beta-ray for Cherenkov counter. The taking it is easy by using a sheet form of scintillating fibers than thinner scintillator crystal. The scintillating fibers trigger counter made from the fibers which size is 0.2 mm diameter is bundled and connected to photomultiplier tubes (PMTs) at the both ends. This counter was obtained detection efficiency of 54%. The thickness of the fiber sheet is depended to the efficiency and the energy loss. Therefore, the thinner type trigger counter is more important for ⁹⁰Sr counter.

B. Aerogel Cherenkov Counter

Relation between kinematic energy E_{β} and velocity $\beta = v/c$ of beta-ray is given as

$$\beta = \frac{\sqrt{(m_e + E_\beta)^2 - m_e^2}}{m_e + E_\beta},\tag{2}$$

which m_e is mass of electron. Cherenekov counter makes yes or no decision based on Cherenkov threshold velocity $\beta_{th} = 1/n$ [4], when n is refreactive index. To not emission Cherenkov at beta-ray with maximum 1.174 MeV from ¹³⁷Cs, a refractive index of the radiator is required less than 1.0492 [2], [3], [5], [6]. Used radiator is a silica aerogel [7] with the index of 1.0485. A Cherenkov counter using silica aerogel as radiator is Aerogel Cherenkov counter. To extend effective area, wavelength shifting fiber sheet has been used instead of PMT cathode. This system has extending effective area, using small PMT and reducing production cost.

C. Cosmic ray veto counter

For suppression of background of cosmic ray, this system has been added veto counter. The veto counter composes plastic scintillator and WLS fibers and PMT. The Scintillator size is 200 mm \times 100 mm \times 5 mm. WLS fibers connected to four side faces of scintillator and bundled both end fibers in one. Then PMT is connected the bundled fibers and readouts scintillation light. When a muon as cosmic ray pass though center of the veto counter, mean number of photoelectrons is observed 6.6 by the PMT.

 TABLE I

 COMPONENT OF ⁹⁰SR COUNTER

the device	eff. area[mm ²]	components
SFT	300×100	scint. fiber sheet, PMT (x2),
		eff.: 54.4%
AC	300×100	aerogel, WLSF light guide, PMT (x4)
veto	400×200	scintillator, WLSF light guide, PMT (x1),
		mean num. of p.e.: 6.6

D. Electronics

All detection system based on NIM is given as

$$Count = C_{SFT} \cap C_{AC} \cap \overline{C_{veto}},\tag{3}$$

which C_{SFT} is count of scintillating fibers trigger counter, C_{AC} is count of Cherenkov counter and C_{veto} is veto counter. C_{SFT} has coincidence logic of PMT signals. C_{AC} has OR logic of PMT signals.

E. Mechanism of identification of ⁹⁰Sr

The identification mechanism of 90 Sr is describes in following. In a case of 90 Sr, when the trigger counter reacts on the beta-ray, aerogel emits the Cherenkov light and WLS fiber reacts and read the Cherenkov light. On the other hand, in a case of 137 Cs, the trigger counter reacts on the beta-ray, aerogel stops the beta-ray and Cherenkov light is not emitted. Therefore, aerogel has a function as a radiator and shielding material. the gamma-ray is not reacted on the lower density detector. Therefore, the noise is reducible from other radiation. Cosmic ray is also reacted the veto counter.

III. PERFORMANCE ESTIMATION AND DEMONSTRATION

We have produced real-time 90 Sr counter prototype. This effective area is 300 mm \times 100 mm. We have estimated the performance using radioactivity sources default by isotope associate such as 90 Sr (25 kBq) and 137 Cs (25kBq).

Fig. 2. The histogram which is number of count rate on each source

A. Performance estimation

We have made histograms which is number of counts N of putting source on a minute. A sensitive η of this counter for 90 Sr is default as

$$\eta(Sr) = \frac{R_{Sr} - R_{BG}}{A_{Sr}},\tag{4}$$

which R is count rate calculated R = N/t, t is measurement time, R_{Sr} and R_{BG} are the count rate of ⁹⁰Sr and background event, respectively. A_{Sr} is radioactivity of about 25 kBq. A ratio Γ between sensitivity of ¹³⁷Cs and ⁹⁰Sr is given as

$$\Gamma(Cs/Sr) = \frac{\eta(Cs)}{\eta(Sr)}$$
$$= \frac{R_{Cs} - R_{BG}}{R_{Sr} - R_{BG}} \left(\frac{A_{Sr}}{A_{Cs}}\right), \qquad (5)$$

which R_{Cs} , R_{Sr} and R_{Cs} are count rate of ¹³⁷Cs, ⁹⁰Sr and background, respectively.

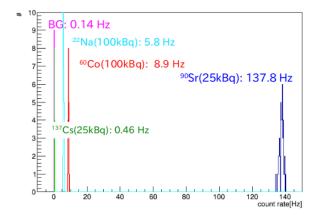


Fig. 3. The histogram which is number of count rate on each source

 TABLE II

 RESULT OF THE SENSITIVE AND THE RATIO [2]

performance	parameter
$\eta(^{90}Sr)$	$(5.49 \pm 0.06) \times 10^{-3}$ Hz/Bq
$\eta(^{137}Cs)$	$(1.12 \pm 0.66) \times 10^{-5}$ Hz/Bq
$\eta(^{60}Co)$	$(8.77 \pm 0.39) \times 10^{-5}$ Hz/Bq
$\eta(^{22}Na)$	$(5.65 \pm 0.33) \times 10^{-5}$ Hz/Bq
Background	$(1.48 \pm 0.46) \times 10^{-1} \text{ Hz}$
$\Gamma(Cs/Sr)$	$(2.0 \pm 1.2) \times 10^{-3}$

B. Demonstration in environment existing ^{137}Cs

This counter should be detected 90 Sr in environment existing a lot of 137 Cs. We have tried the demonstration using 10 137 Cs sources as same as radioactivity. In the case of using a 137 Cs source, mean count rate is obtained 0.46 Hz. Then, in the case of using 10 sources, mean count rate is obtained 5.2 Hz. Therefore this counter has linearity on 137 Cs and lower sensitivity. Next, in the case of adding 90 Sr sources, mean count rate is obtained 165 Hz. This result is enough for detection 90 Sr in radioactive background.

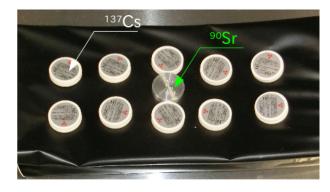


Fig. 4. demonstration of detection ⁹⁰Sr in radioactive background

C. Uniformity of the sensitivity

The previous tests have been measured at center of the incident position. We have check uniformity of this counter sensitivity with 11 points as same as making the histograms. As the result, the effective area with uniformity which default as fluctuation less than 10% is length of 21 cm and mean sensitivity is obtained 5.2 Hz/Bq.

IV. CONSIDERATION AND CONCLUSION

A. Detection Limit of Bq/cm^2

From the results for prototype counter, we have a discussion about limit of detection for 90 Sr radioactivity. The limit of detection to identify between 90 Sr and 137 Cs at relativity of 99% or more is imported from

$$N_{Sr} = aSxt + cSt \tag{6}$$

$$N_{Cs} = bkSxt + cSt \tag{7}$$

$$N_{Sr} > N_{Cs} + 2.58 \sqrt{N_{Cs}},$$
 (8)

where N_{Sr} is Number of count for 90 Sr, N_{Cs} is Number of count for 137 Cs, a is sensitivity of ${}^{90}Sr$ [Hz/Bq], b is sensitivity of 137 Cs [Hz/Bq], c is background rate per unit area [Hz/cm²], S is effective area [cm²], k is amounts ratio of 137 Cs/ 90 Sr at measurement environment, t is measurement time [sec], x is radioactivity of 90 Sr [Bq].

The value x satisfied Eq. (6), (7) and (8) means a limit of detection of ⁹⁰Sr and depends on effective area S, measurement time t and environment of the ratio of ¹³⁷Cs/⁹⁰Sr existence k. Then, By substitution the experimental values for them, the performance is achieved the limit of about 10^{-2} Bq/cm² at a minute of measurement time and the environment of k = 100 [2].

B. Detection Limit of Bq/kg

The detecting beta-ray is surface contamination inspection mainly. For radioactive contamination inspection of foods, radioactivity per unit of mass should be measured. The sample is thinned to thickness of about mm for the surface contamination inspection. For example, when a sample with density of 1 kg/L and thickness of 1 mm is 0.1 g/cm², detection limit is estimated 100 Bq/kg from the limit of the surface inspection. In adding, in a case of contamination water inspection, after a sample heated and evaporated, the limit would be able to be improved by the loss volume.

C. conclusion

We have developed real-time 90 Sr counter which detects only 90 Sr in radiation background and measures it at a short time. The prototype was produced and estimated performance. This counter has effective area 300 mm × 100 mm, 90 Sr sensitivity of $(5.49\pm0.06) \times 10^{-3}$ Hz/Bq and 137 Cs/ 90 Sr ratio of $(2.0\pm1.2) \times 10^{-3}$. The detection limit is satisfied enough 100 Bq/kg in environment of other radiation.

ACKNOWLEDGMENT

Thanks for supports from member in Chiba University: Prof. Kawai, Dr. Tabata, Mr. Kobayashi, Ms. Kaneko, Mr. Han and Mr. Kodama.

REFERENCES

- [1] TEPCO, The Estimated Amount of Radioactive Materials Released into the Air and the Ocean Caused by Fukushima Daiichi Nuclear Power Station Accident Due to the Tohoku-Chihou-Taiheiyou-Oki Earthquake (As of May 2012), TEPCO Press Release (May 24, 2012); http://www.tepco.co.jp/en/press/corp-com/release/ 2012/1204659_1870.html.
- [2] H. ITO et al., PoS(TIPP2014)242.
- [3] S. Ijima, H. Ito et al., IEEE Nuclear Science Symposium and Medical Imaging Conference (2013) NPO1-169, DOI: 10.1109/NSS-MIC.2013.6829625.
- [4] PDG, Chinese Phys. C, vol. 38, No. 9 (2014) 090001, 28.
- [5] R. Pestotnik et al., Nucl. Instr. and Meth. A 595 (2008) 278 280.
- [6] D. Brajnik, et al., Nucl. Instr. and Meth. A 353 (1994) 217.
- [7] M.Tabata, et al., Physics Proceedia 37 (2012) 642 649.