Readout of high resolution DOI for whole-body 3D-PET detector using wavelength shifting fibers

Hiroshi ITO^{* (1)}, Soorim Han^(1, 2), Naomi Kaneko⁽¹⁾, Hideyuki Kawai⁽¹⁾, Satoshi Kodama⁽¹⁾, Atsushi Kobayashi⁽¹⁾

⁽¹⁾Physics Department, Graduate School of Science, Chiba University, Japan ⁽²⁾Department of Medical Physics, National Institute of Radiologicl Science

Conflict of Interest Disclosure

Name of First Author: Hiroshi ITO

In connection with the presentation, I disclose conflict of interest with the following companies/ organizations.

2014年度研究補助金: 公益財団法人 中谷医工計測技術復興財団 特許出願: 千葉大学 平成27年1月16日 特願2015-006569

Index

- 1. DOI-PET
- 2. Readout DOI with WLSF
- 3. Experiment & Result
- 4. Conclusion & Discussion

O-003	The 109th Meeting of Jap	an Society of Medical Physics
		Date: 16 – 19 April 2015
H. ITO (Chiba Univ.)	1. DOI-PET	Venue: Pacifico Yokohama

PET: Positron Emission Tomography

Mechanism

- 18F-FDG emitting positron (e+)
- e+e- annihilation 2y
- Stacking the linaes
- Imaging 3D distribution of source

Application

- search of censer
- study of brain science...

DOI (Depth of Interaction)

Limit of response width make narrow

So that, high spatial resolution would be achieved at edge with **DOI**

Study Purpose

1. Readout of DOI with sub mm resolution using narrow size WLS fibers

2. Development of new PET which has higher performance and Lower cost

 \sim 0.5 mm resolution of DOI

~\$ 1 million

O-003 H. ITO (Chiba Univ.) 2. Readout DOI with WLSF Venue: Pacifico Yokohama

New Idea System for DOI

Characteristic 1. using WLSF 2. using scint. Plate 3. readout by MPPC

WLSF: readout **XY** information Scintillator: **Z** information and **Energy** Photo-device: **MPPC**®

Total system stacking this layers

Merit

- 1. resolution depending on fiber size
- 2. reducible cost of possessing crystal

O-003 H. ITO (Chiba Univ.) 2. Readout DOI with WLSF Venue: Pacifico Yokohama

O-003 The 109th Meeting of Japan Society of Medical Physics Date: 16 – 19 April 2015 H. ITO (Chiba Univ.) 2. Readout DOI with WLSF Venue: Pacifico Yokohama

Wavelength Shifting Fiber (R-3)

Peak absorption wavelength **550 nm** Peak emission wavelength **600 nm** Cladding Thickness: T = 3% (T0) + 3% (T1) = 6% of D Numerical Aperture: NA = 0.72 Trapping Efficiency: 5.4%

Readout system

Readout system

3. Experiment & Result

The 109th Meeting of Japan Society of Medical Physics Date: 16 – 19 April 2015 Venue: Pacifico Yokohama

WLSF経由

saturated Np.e. beginning 3 layers.

Relation of PMT2 & 3 is obtained 1/20 @ 4 layers.

Collection efficiency is 0.1 at both readout.

•Np.e. over the 5 p.e. is enough for pos. readout. Therefore, the 1 layer allows readout DOI.

Collimator 2: ϕ 2 mm Collimator 1: ϕ 5 mm

O-003 The 109th Meeting of Japan Society of Medical Physics Date: 16 – 19 April 2015 H. ITO (Chiba Univ.) Venue: Pacifico Yokohama 3. Experiment & Result

3. Experiment & Result

The 109th Meeting of Japan Society of Medical Physics Date: 16 – 19 April 2015 Venue: Pacifico Yokohama

Relation between inc. and rec. pos. is oibtained. ● inc. – rec. pos. distribution achieved pos. of DOI with resolution 0.65 mm FWHM ($\sigma \sim 0.255$ mm). • $S/N = p3/p0 \sim 2.0$

•We have developing new PET detector using WLSF.

 This characteristic is using GAGG, WLSF with long wavelength and MPPCs.

Experimental DOI resolution has achieved 0.65
 mm (FWHM).

@ DGAGG = 2 mm, ϕ col = 2 mm, Δx = 2 mm, WR-3=0.4 mm.

Next plan has estimation of <u>3-D resolution</u>, <u>energy</u> <u>resolution</u> and <u>timing resolution</u>.

The 109th Meeting of Japan Society of Medical PhysicsDate: 16 – 19 April 2015BackupVenue: Pacifico Yokohama

エネルギー分解能は?

20

O-003 The 109th Meeting of Japan Society of Medical Physics Date: 16 – 19 April 2015 H. ITO (Chiba Univ.) Backup Venue: Pacifico Yokohama

実験結果は予想値とConsistent?

WLSFでの収集効率10%は?

 $\epsilon_{\text{coll}} = \epsilon_{\text{trap}}(\lambda 1) \epsilon_{\text{abs}}(\lambda 1) \epsilon_{\text{WLS}}(\lambda 1 \ ; \ \lambda 2) \epsilon_{\text{PMT}}(\lambda 2) / \epsilon_{\text{PMT}}(\lambda 1)$

トラッピング効率ε_{trap}(λ1) ~0.054 ファイバーQ.E. ε_{abs}(λ1) 再発光効率 ε_{WLS}(λ1;λ2) PMT 平均Q.E. ε_{PMT}(λ) λ1:シンチ光波長 λ2:変換後の波長

The 109th Meeting of Japan Society of Medical PhysicsDate: 16 – 19 April 2015BackupVenue: Pacifico Yokohama

使用したPMTは?

R9880Uシリーズ

WAVELENGTH (nm)

PHOTON IS OUR BUSINESS

The 109th Meeting of Japan Society of Medical PhysicsDate: 16 – 19 April 2015Venue: Pacifico Yokohama

使用したMPPCは?

PHOTON IS OUR BUSINESS

The 109th Meeting of Japan Society of Medical PhysicsDate: 16 – 19 April 2015Venue: Pacifico Yokohama

MPPCの読出しは?

```
EASIROCモジュール
64ch ADC + HV
30万円
Based on NIM
```

Developed by KEK

The 109th Meeting of Japan Society of Medical PhysicsDate: 16 – 19 April 2015BackupVenue: Pacifico Yokohama

時間分解能は?

本実験ではまだ測定していない 結晶側面のMPPCsの平均時間分解能を定義し評価する。

独立な事象がn個ある場合のゆ らぎはsqrt(n)に反比例する。

あるMPPCの時間分解能が独立 に存在する時、個数が多ければ 平均の時間分解能のゆらぎは小 さくなる。

