2014.05.08-09 Development of AC2 for E36 experiment /TREK J-PARC

Chiba University Hiroshi ITO hiroshi@hepburn.s.chiba-u.ac.jp

Specification of AC2 Requiring for E36

WLSF Light Guide

WLSF @Kuraray Co. Ltd. (B-3, Y-11, O-2, R-3), double Cladding, 0.2 mm Dia.

Fiber Light Guide @ Chiba Univ. Effective area : 10 x 20 cm² (x4) Cross section : 175 mm² ○ 15 mm Dia. □ 14mm

Primary test of prototype

~Property of Prototype~ Effective area ···· 6 cm x 10 cm (12 cm x 10 cm) Cross section ··· 08 mm Dia. (x4) PMT ··· R9880U-210, -20 *see the data sheet after back up

1. Cosmic ray test

We have measured collection efficiency of fiber light guide for Cherenkov light, detection efficiency for thickness of aerogel and aptitude of WLSF kinds.

2. Beam test @Tohoku

In addition to the above, we have Measured detection efficiency by position dependence, fiber hit event, Comparison with the measurement using cosmic ray and difference of index of aerogel: 1.03, 1.05 and 1.08.

1. Cosmic ray test

DAQ System

114

20.15

535

118.8

15.31

6.927e-08 / 0

335.5 ± 18.7

 0.4879 ± 0.0150

113.4 ± 0.0

18.3/8

 219 ± 14.3

105.4 ± 0.0

).6715 ± 0.0263

1. Cosmic ray test

		PMT1	PMT2	PMT3	PMT4	Logic
Gain		1.80E+07	2.57E+07	3.55E+07	3.41E+07	OR
0.5p.e.thr.	eff	0.318	0.284	0.217	0.194	0.626
	error	0.014	0.012	0.009	0.008	0.027
	p.e.	0.38	0.33	0.24	0.22	0.984
	error[p.e.]	0.02	0.02	0.01	0.01	0.072
Ped 3 σ thr.eff	eff	0.348	0.310	0.228	0.222	0.658
	error	0.015	0.013	0.010	0.010	0.028
	p.e.	0.43	0.37	0.26	0.25	1.073
	error[p.e.]	0.02	0.02	0.01	0.01	0.083

Detection efficiency is decided from the ADC distribution of the PMT respectively. Gaussian fits to the pedestal (red line). Detection event is defined as an event has photoelectrons more than 0.5 p.e. threshold (green).

Mean number of photoelectrons was calculation to approximation of Poisson distribution with detection efficiency.

We analyzed the detection efficiency of M-ACC by all of the PMT connected the fiber light guide. It is a combination of the "or" logic:

1ch \cup 2ch \cup 3ch \cup 4ch, of the detection event of each the PMT.

 $N_{p.e.}\!\!\simeq\!-\!\ln\left(1\!-\!efficiency\right)$

1. Cosmic ray test

Result

Photoelectrons of aerogel thickness (n=1.05)

1. Cosmic ray test

PMT direct reading Cherenkov light

1. Cosmic ray test

summary

4 PMTs have read a Cherenkov light through WLSF. Photoelectrons have been estimated "or" logic of PMT's detection. Cosmic ray tests were obtained the following results.

- WLSF Ligth guide kinds BYOR > BBYY
- Number of photoelectrons~1 *p.e. (n=*1.05, 6 *cm)*
- Collection efficiency $\sim 5\%$

Comparison with reading direct PMT : 1 p.e./20 p.e.

In the test, it was found a rough performance of prototype and evaluation method has been established.

2. Beam test @Tohoku

Measurement items

- Collection efficiency of fiber light guide
 Comparison with reading direct large PMT(5 inch)
- Number of photoelectrons with thickness of the aerogel
- Number of photoelectrons with refractive index of the aerogel
- Position dependence of incident e⁺ beam
- Position dependence of incident e⁺ beam for 2 face light guide type

Collection efficiency of fiber light guide

Comparison with reading direct large PMT(5 inch)

Reading Cherekov	Aerogel	eff	error	p.e.	error	coll. Eff.
BYOR, [6cm x 10cm]	6cm, (1.05)	0.76	0.02	1.43	0.03	8.1%
BBYY, [6cm x 10cm]	6cm, (1.05)	0.68	0.02	1.14	0.03	6.4%
BY, [6cm x 10cm]	6cm, (1.05)	0.70	0.02	1.19	0.03	6.7%
BBYY, [6cm x 10cm], coating	6cm, (1.05)	0.76	0.02	1.42	0.03	8.0%
BYOR(x2), [6cm x 10cm (x2)]	6cm, (1.05)	0.73	0.01	1.31	0.03	7.4%
PMT direct	6cm, (1.05)	1.00	0.00	17.71	0.06	
-						

Number of photoelectrons with thickness and refractive index of the aerogel

Incident beam position	aerogel	eff	error	p.e.	error
[BYOR], 6cm x 10cm	0	0.10	0.01	0.11	0.01
	3	0.56	0.01	0.83	0.02
	6	0.76	0.02	1.42	0.03

Beam test Fiber Light Guide [BYOR]

Estimate of umber of photoelectrons with the index

$$N_{p.e.} \propto 1 - \frac{1}{(n\beta)^2}$$

	1-(1/nβ)^2	rate of 1.05
1.03	0.0574	0.6
1.05	0.0929	1
1.08	0.1427	1.53

Incident beam position	aerogel	eff	error	p.e.	error	ratio of 1.05
[BYOR], 6cm x 10cm	1.03	0.39	0.01	0.49	0.01	0.6
	1.05	0.56	0.01	0.83	0.02	1.0
	1.08	0.64	0.01	1.02	0.02	1.2

Position dependence of incident e⁺ beam

Position dependence of incident e⁺ beam for 2 face light guide type

2. Beam test @Tohoku

performance of prototype

- Size of prototype : 12 x 10 cm²
- Reading by WLSF & PMT
- Aerogel : index(1.05), thickness 6cm
 - WLSF coll. eff. $\sim 8\%$ Detection eff. $\sim 72\%$ Mean Photoelectrons ~ 1.3 p.e.Position dependence $\sim 7\%$
- Rate of index 1.08/1.05 = 1.2 times
- Timing resolution ~ 0.14 ns

Discussion

According to the primary test

Prototype :12 x 10 cm²Reading by WLSF & PMTAerogel : index(1.05), thickness 6cmWLSF coll. Eff. \sim 8%Position dependence \sim 7%Detection eff. \sim 72%Mean Photoelectrons \sim 1.3 p.e.Rate of index 1.08/1.05

Development of AC2

Aerogel (n=1.08) 20 x 20 x 4 cm³ WLSF (2800 fibers) Sheet width : 14cm Cross section : 176mm² Reflector : square pyramid form MPPC (6 x 6 mm²) x5 Reading by EASIROC module Efficiency : ~90% Number of photoelectrons : ~2 p.e. *PMT \rightarrow MPPC position dependence : a few %

MPPC

EASIROC module

Discussion

1.50

plan1			
Aerogel 20 x 20 x 4 (x12) WLSF 2800 fibers (2m))	1000 k¥	Kakenhi
Cross section : 176mm ² MPPC (6 x 6 mm ²)		<mark>400 k¥ (x4)</mark> 16 k¥ (x60)	kakenhi of last year
Module EASIROC(64ch) Total		400 k¥ 960 k¥	Kakenhi
Plan2			
Aerogel WLSF 2800 fibers (2m)		1000 k¥	Kakenhi
Cross section : 176 mm ² PMT ($\Box 18$ mm)		<mark>400 k¥ (x4)</mark> 120 k¥ (x24)	kakenhi of last year
Total		3280 k¥	
Plan3			
Aerogel		1000 k¥	Kakenhi
5 inch large PMT		500 k¥ (x24)
lotal		12000 k¥	

Back Up

Particle Identification for e/ μ

Calibration of PID performance

• Particle identification by

a) TOF

b) Aerogel Cherenkov (AC)

- c) Lead Glass (PGC)
- Efficiency calibration with the "sandwich method" using

real K_{e2} data.

Element for check	Tracking elements	PID
AC	C1, C2, C3, C4	TOF⊗PGC
TOF	C1, C2, C3, C4	AC⊗PGC
PGC	C1, C2, C3, C4	TOF⊗AC

• PID efficiency limited by K_{e2} statistics

• We may also use K_{e3} events at reduced field

 $P_{e} = 247 \text{ MeV/c},$ $P_{\mu} = 236 \text{ MeV/c}$

Condition of particle identification for e/ μ

Aerogel : refractive index n<1.094

PID performance will improve if AC2 will be installed.

Element for check	Tracking elements	PID
AC	C1,C2,C3,C4	TOF⊗PGC⊗AC2
TOF	C1,C2,C3,C4	AC⊗PGC⊗AC2
PCG	C1,C2,C3,C4	AC⊗TOF⊗AC2
AC2	C1,C2,C3,C4	AC⊗TOF⊗PGC

This experiment requires precise $e+/\mu+$ identification. The will install aerogel Cerenkov (AC) counter, time-of-fright (T counter, and lead glass counter (PGC) so that it is possible particle identification to achieve less than 10⁻⁶ mis-identific challenge to add aerogel Cerenkov (AC2) counter betweer chamber and TOF2 for higher identification. For the above the detector will be obtained less than 10⁻⁸ mis-identificati

Cherenkov Light Guide for WLSF

Fiber :0.2mm Diameter

ose aie0006aes ase ate age028ars ace ace ais008aet ast att gat att act act at 0006aes ase ate age029ars ace i

AC2 Dsign

Making for WLSF Light Guide

WLSF @Kuraray Co. Ltd. (B-3, Y-11, O-2, R-3), double Cladding, 0.2 mm Dia.

Fiber Light Guide @ Chiba Univ. Effective area : 100 x 200 mm² (x4) Cross section : 320 mm² ○ 20 mm Dia. □ 18 mm

Making Fiber Light Guide (FLa series)

波長変換ファイバー(直径0.2 mm)をシート化して層状にする。

Problem for method of making fiber sheet

- Attend for effective area
- Connected Adhesive
- 断面処理・研磨処理 :研磨方法を改善中
- 下地反射材
- ・受光面表面コーティング:稲玉さんのライトガイド用のジェルは使えるのか

:max of making now ··· 30 x 5 cm²

: Aron Alpha solve fiber \rightarrow PVAL, vinyl ester resin

:アルミマイラーに表裏がある、ESフィルムはどうか

Silica Aerogel

- SiO2 + 空気の混合
- 低密度、低屈折率、透明
- 製作時に屈折率を決定可能
 1.002<n<1.3

n = 1.049 TL= 40 mm Size 60 x 90 x 10[mm³]

Wavelength Shifting Fiber

Materials

		Material	Refractive	Density [ɑ/cm³]	No. of atom
Core	<u>.</u>	Polystyrene (PS)	n₀=1.59	1.05	C: 4.9×10 ²² H: 4.9×10 ²²
Cladding	for single cladding inner for multi cladding	Polymethylmethacrylate (PMMA)	ND=1.49	1.19	C : 3.6×10 ²² H : 5.7×10 ²² O : 1.4×10 ²²
Clauding	outer for multi cladding	Fluorinated polymer (FP)	N□ =1.42	1.43	

Wavelength Shifting Fiber

Cladding and Transmission Mechanism

Single Cladding

Single cladding is standard type of cladding.

Lost photon

Multi Cladding

Multi cladding fiber (M) has 50% higher light yield than single cladding fiber because of large trapping efficiency. Clear-PS fiber of this cladding has extremely higher NA than conventional PMMA or PS fiber, and very useful as light guide fiber.

Multi cladding fiber has long attenuation length equal to single cladding fiber.

Photomultiplier Tube

R9880U-210 : (B-3,Y-11) -20 : (O-2, R-3)

10 20 30

WAVELENGTH (nm)

WAVELENGTH (nm)

Photomultiplier Tube

R7600U-200 : (B-3,Y-11) -20 : (O-2, R-3)

effective area; 18 mm x 18 mm

WAVELENGTH (nm)

WAVELENGTH (nm)

1. Cosmic ray test

1. Cosmic ray test

PMT direct reading Cherenkov test

2. Beam test

解析手法

0.5 p.e.しきい値と、ペデスタル3 σ では検出効率 による光電子数が約0.1 p.e.の差があった。

n=1.03

1 de

	index	trans. Length [mm]
JESU1-8a	1.0367	39.8
JESU1-7a	1.0369	43.5
JESU1-8b	1.0366	43.4
111111	1.0367	42.2
	0.0002	2.1

n=1.05

	index	trans. Length [mm]
9a-k	1.0479	40.1
8a-I	1.0496	40.5
8a-h	1.0494	38.3
	1.0490	39.6
	0.0009	1.2

n=1.08

	index	trans. Length [mm]
PDR8-6b	1.0749	42.4
PDR8-5b	1.0753	40.6
PDR8-4b	1.0762	42.1
	1.0755	41.7
	0.0007	1.0

h2

