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Abstract

Within the frameworks of the light-front quark model (LFQM) and chiral perturbation theory

(ChPT) of O(p6), we reevaluate the form factors of the K+ → γ transition. We use these form

factors to study the decay of K+ → e+νeγ, which is dominated by the structure dependent con-

tribution. We show the differential decay branching ratio as a function of x = 2Eγ/mK , where

Eγ (mK) is the photon energy (kaon mass). Explicitly, we find that, in the standard model with

the cut of x = 0.01 (0.1), the decay branching ratio of K+ → e+νeγ is 1.54 (1.44) × 10−5 and

1.57 (1.47) × 10−5 in the LFQM and ChPT, respectively.
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I. INTRODUCTION

Experimentally, both decays of K+ → e+νe and µ+νµ have been precisely measured with

the decay branching ratios being (1.55±0.05)×10−5 and (63.44±0.14)×10−2 [1], respectively.

The smallness of the electron mode can be easily understood as it is helicity suppressed with

the suppression factor of m2
e/m

2
µ ∼ 2 × 10−5 in comparison with the muon mode. For the

corresponding radiative decays of K+ → ℓ+νℓγ (ℓ = e, µ), it is known that they receive two

types of contributions: “inner bremsstrahlung” (IB) and “structure-dependent” (SD) [2, 3].

For the decay of K+ → e+νeγ, while the IB contribution is still helicity suppressed and

contains the electromagnetic coupling constant α as well, the SD part gives the dominant

contribution to the decay rate as it is free of the helicity suppression. Similarly, the SD

contribution is also important to the decay of K+ → µ+νµγ [4].

In the standard model (SM), the decay amplitude of the SD part involves vector and

axial-vector hadronic currents, which can be parametrized in terms of the vector form factor

FV and axial-vector form factor FA, respectively. However, the experimental determinations

on these form factors are poorly given and model-dependent [5, 6, 7]. In particular, the

experimental results on the decay rate of K+ → e+νeγ in Ref. [5, 6, 7] were based on

the assumption of FV and FA being some constant values in the chiral perturbation theory

(ChPT) at O(p4) [4]. In the ongoing data analysis of the E949 experiment at BNL, more

precision measurements on the decay of K+ → e+νeγ are expected [8] and thus, the model-

independent extractions of the SD form factors are possible. Theoretical calculations of FV

and FA in the K+ → γ transition have been previously done in the ChPT at O(p4) [4] and

O(p6) [9, 10]. However, the results of the ChPT at O(p6) [10] have not been fully applied to

the decay of K+ → e+νeγ yet. Moreover, it is important if we could obtain information on

FV,A in some QCD model other than the ChPT. For this purpose, in the present study we

will also evaluate FV,A in the light front quark model (LFQM). We will use the form factors

in both ChPT and LFQM to examine the decay of K+ → e+νeγ.

This paper is organized as follows: We present the relevant formulas for the matrix

elements and form factors for the decay of K+ → e+νeγ in Sec. II. In particular, we study

the transition form factors of K+ → γ in the ChPT of O(p6) and LFQM. In Sec. III, we

describe the differential decay rate of K+ → e+νeγ. In Sec. IV, we show our numerical

results on the form factors and the decay branching ratio in both ChPT and LFQM. We will
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also illustrate the differential decay branching ratio as a function of x = 2Eγ/mK , where

Eγ and mK are the photon energy and kaon mass, respectively. We give our conclusions in

Sec. V.

II. MATRIX ELEMENTS AND FORM FACTORS

In the SM, the amplitude of the decay K+ → e+νeγ (K+
e2γ) can be written in terms of IB

and SD contributions, given by [3, 4, 11, 12]

M = MIB + MSD,

MIB = ie
GF√

2
sinθcFKmeǫ

∗
αKα,

MSD = −ie
GF√

2
sinθcǫ

∗
µLνH

µν , (1)

where

Kα = ū(pν)(1 + γ5)

(
pα

K

pK · q − 2pα
e + 6qγα

2pe · q

)
v(pe),

Lν = ū(pν)γν(1 − γ5)v(pe),

Hµν =
FA

mK

(−gµνpK · q + pµ
Kqν) + i

FV

mK

ǫµναβqαpKβ , (2)

ǫα is the photon polarization vector, pK , pν , pe, and q are the four-momenta of K+, νe, e+,

and γ, and FK and FA(V ) are the K meson decay constant and the axial-vector (vector)

form factor corresponding to the axial-vector (vector) part of the weak currents, defined by

〈 0|s̄γµγ5u|K+(pK) 〉 = −iFKpµ
K ,

〈γ(q)|ūγµγ5s|K(pK) 〉 = e
FA

mK
[(p · q)ǫ∗µ − (ǫ∗ · p)qµ] ,

〈γ(q)|ūγµs|K(pK) 〉 = ie
FV

mK
εµαβνǫ∗αqβpν , (3)

respectively, with p = pK − q being the transfer momentum. We note that MIB in Eq. (1)

is suppressed due to the small electron mass me. In the decay of K+ → e+νeγ, the form

factors FA,V in Eq. (3) are the analytic functions of p2 = (pK − q)2 in the physical allowed

region, given by

m2
e ≤ p2 ≤ m2

K . (4)

In the following discussion, we will first summarize the formulas for FV,A in the ChPT

and then study these form factors in the LFQM. We note that similar calculations for the

P → γ (P = K0, D, B) transitions in the LFQM have been performed in Refs. [13, 14, 15].
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A. Chiral Perturbation Theory

The chiral Lagrangians contain both normal and anomalous parts. At orders of pm, the

non-anomalous and anomalous Lagrangians of L(m)
n and L(m)

a relevant to the K+
e2γ decay are

given by [10]

L(2)
n =

F 2

4
Tr(DµUDµU †) +

F 2

4
Tr(χU † + Uχ†) ,

L(4)
n = L1

[
Tr(DµUDµU †)

]2
+ L2Tr(DµUDνU

†)Tr(DµUDνU †)

+L3Tr(DµUDµU †DνUDνU †) + L4Tr(DµUDµU †)Tr(χU † + Uχ†)

+L5Tr(DµUDµU †(χU † + Uχ†)) + L6

[
Tr(χU † + Uχ†)

]2

+L7

[
Tr(χ†U − U †χ)

]2
+ L8Tr(χU †χU † + Uχ†Uχ†)

+iL9Tr(LµνD
µUDνU † + RµνD

µU †DνU) + L10Tr(LµνURµνU
†) ,

L(6)
n = y17〈χ+hµνh

µν〉 + y18〈χ+〉〈hµνh
µν〉 + y81〈χ+f+µνf

µν
+ 〉

+y82〈χ+〉〈f+µνf
µν
+ 〉 + iy83〈f+µν {χ+, uµuν}〉 + iy84〈χ+〉〈f+µνu

µuν〉

+iy85〈f+µνu
µχ+uν〉 + iy100〈f−µν [f

νρ
− , hµ

ρ ]〉 + y102〈χ+f−µνf
µν
− 〉

+y103〈χ+〉〈f−µνf
µν
− 〉 + y104〈f+µν [f

µν
− , χ−]〉 + y109〈▽ρf−µν ▽ρ fµν

− 〉

+y110〈▽ρf+µν [h
νρ, uν]〉 + .... , (5)

and [16, 17]

L(4)
a = − 1

16π2
ǫµναβTr

(
U∂µU+∂νU∂αU+lβ − U+∂µU∂νU

+∂αUrβ

)

− i

16π2
ǫµναβTr

(
∂µU+∂νlαUrβ − ∂µU∂νrαU+lβ

)

+U∂µU
+ (lν∂αlβ + ∂ν lαlβ) ,

L(6)
a = iC7ǫ

µναβ〈χ−f+µνf+αβ〉 + iC11ǫ
µναβ〈χ−[f+µν , f−αβ]〉

+ C22ǫ
µναβ〈u− {▽γf+γν , f+αβ}〉 + .... , (6)

respectively, where F is the meson decay constant in the chiral limit, Li, yj and Ck are

unrenormalized coupling constants, U is the unitary matrix, parametreized by

U = exp


i

√
2

F




π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K0 − 2 η√
6





 , (7)
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Lµν and Rµν are the field-strength tensors of external sources, given by

Lµν = ∂µℓν − ∂νℓµ − i [ℓµ, ℓν ] ,

Rµν = ∂µrν − ∂νrµ − i [rµ, rν ] , (8)

and the definitions of all other fields can be found in Ref. [10].

From the chiral Lagrangians in Eqs. (5) and (6), one obtains the tree and loop contribu-

tions to FV at O(p6) for the K+
e2γ decay to be [9, 10]

FV (p2) =
mK

4
√

2π2FK

{
1 − 256

3
π2m2

KCr
7 + 256π2(m2

K − m2
π)Cr

11 +
64

3
π2p2Cr

22

− 1

16π2(
√

2FK)2

[
3

2
m2

η ln

(
m2

η

µ2

)
+

7

2
m2

π ln

(
m2

π

µ2

)
+ 3m2

K ln

(
m2

K

µ2

)

− 2

∫ [
xm2

π + (1 − x)m2
K − x(1 − x)p2

]
ln

(
xm2

π + (1 − x)m2
K − x(1 − x)p2

µ2

)
dx

− 2

∫ [
xm2

η + (1 − x)m2
K − x(1 − x)p2

]
ln

(
xm2

η + (1 − x)m2
K − x(1 − x)p2

µ2

)
dx

− 4

∫
m2

π ln

(
m2

π

µ2

)
dx

]}
, (9)

where the wave function and decay constant renormalizations have been included and Cr
i

are the renormalized coefficients. From Eq. (5), the tree and loop contributions to FA of

O(p6) lead to [10]

FA(p2) =
4
√

2mK

FK

(Lr
9 + Lr

10) +
mK

6F 3
K(2π)8

[142.65(m2
K − p2) − 198.3]

− mK

4
√

2F 3
Kπ2

{
(4Lr

3 + 7Lr
9 + 7Lr

10)m
2
π ln

(
m2

π

m2
ρ

)
+ 3 (Lr

9 + Lr
10)m

2
η ln

(
m2

η

m2
ρ

)

+2 (8Lr
1 − 4Lr

2 + 4Lr
3 + 7Lr

9 + 7Lr
10)m

2
K ln

(
m2

K

m2
ρ

)}

− 4
√

2mK

3F 3
K

{
2m2

π(18yr
18 − 2yr

81 − 6yr
82 + 2yr

83 + 3yr
84 − yr

85 + 6yr
103)

+2m2
K(18yr

17 + 36yr
18 − 4yr

81 − 12yr
82 + 4yr

83 + 6yr
84 + 4yr

85 − 3yr
100

+6yr
102 + 12yr

103 − 6yr
104 + 3yr

109) +
3

2
(m2

K − p2)(2yr
100 − 4yr

109 + yr
110)

}
, (10)

where Lr
i and yr

i are the renormalized coupling constants. Note that the first terms in Eqs.

(9) and (10) correspond to FV and FA at O(p4) [4, 18], respectively. We remark that the

expressions of Eqs. (9) and (10) have not been explicitly shown in the literature [9, 10].
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B. Light Front Quark Model

In the framework of the LFQM [13, 14, 15], the physical accessible kinematics region

is 0 ≤ p2 ≤ M2
K due to the time-like momentum transfers. The general structure of the

phenomenological light front (LF) meson wave function is based only on the qq̄ Fock space

sector. It can be expressed by an anti-quark s̄ and a quark u with the total momentum

(p + q) such as:

|K(p + q) 〉 =
∑

λ1λ2

∫
[dk1][dk2]2(2π)3δ3(p + q − k1 − k2)

× Φλ1λ2

K (z, k⊥)b+
s̄ (k1, λ1)d

+
u (k2, λ2)|0 〉 , (11)

where Φλ1λ2

K is the amplitude of the corresponding s̄(u) and k1(2) is the on-mass shell LF

momentum of the internal quark. The LF relative momentum variables (z, k⊥) are defined

by

k+
1 = z1(p + q)+, k+

2 = z2(p + q)+, z1 + z2 = 1,

k1⊥ = z1(p + q)⊥ + k⊥, k2⊥ = z2(p + q)⊥ − k⊥ , (12)

and

Φλ1λ2

K (z, k⊥) =

(
k+

1 k+
2

2[M2
0 − (ms − mu)

2]

) 1

2

u (k1, λ1) γ5v (k2, λ2)φ(z, k⊥) , (13)

with φ(z, k⊥) being the space part of the wave function, which depends on the dynamics.

The amplitude of φ(z, k⊥) can be solved in principles by the LF QCD bound state equation

[19, 20]. However, we use the Gaussian type wave function in this study:

φ(z, k⊥) = N

√
dkz

dz
exp

(
−

~k2

2ω2
K

)
. (14)

From Eqs. (11)-(14), the hadronic matrix elements in Eq. (3) are found to be

〈γ(q)|s̄γµ (1 − γ5) u|K(p + q) 〉 =

∫
d4k′

1

(2π)4
ΛK

×
{

γ5
i(−k/

′

2 + mu)

k
′2
2 − m2

u + iǫ
ieuǫ/

i(k/1 + mu)

k2
1 − m2

u + iǫ
γµ(1 − γ5)

i(k/′1 + ms)

k
′2
1 − m2

s + iǫ

+(u ↔ s , k′
1 (k1) ↔ k′

2 (k2))

}
, (15)
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where ΛK is a vertex function related to the us̄ bound state of the K meson, k2 = q − k1

and k′
1 = (p + q) − k′

2 = k1 + p. After integrating over the LF momentum k−
1 in Eq. (15),

we get

〈γ(q)|s̄γµ (1 − γ5) u|K(p + q) 〉

=

∫ p+q

q

[d3k′
1]

{
1

k−
1 − k−

1on

(Iµν |
k
′
−

1on

)
ΛP

k
′−
2 − k

′−
2on

+ (u ↔ s , k′
1 (k1) ↔ k′

2 (k2))

}
, (16)

where

[d3k′
1] =

dk+
1 dk1⊥

2(2π)3k
′+
1 k

′+
2 k+

1

,

Iµν |k−

1on

= Tr

{
γ5(−k/

′

2 + mu)ieuǫ/(k/1 + mu)γ
µ(1 − γ5)(k/

′

1 + ms)

}
,

k−
ion =

m2
i + k2

i⊥
k+

i

, k
′−
1(2) = p−on − k

′−
2(1)on , k−

1 = q− − k−
2on , (17)

with {on} representing the on-shell particles. For the kaon, the vertex function ΛP in Eqs.

(15) and (16) is given by [21, 22]:

ΛP

k
′−
2 − k

′−
2on

→

√
k

′+
1 k

′+
2

√
2 M̃0

φ(z′, k⊥) . (18)

To calculate the right hand part of Eq. (16), we choose a frame with the transverse momen-

tum p⊥ = 0 so that p2 = p+p− ≥ 0 covers the entire range of the momentum transfers. Here,

we have used the LF momentum variables (x, k⊥). Hence, the relevant quark momentum

variables in Fig. 1 are

k
′+
1 = (1 − z′)(p + q)+, k

′+
2 = z′(p + q)+, k

′

1⊥ = (1 − z′)q⊥ + k
′

⊥, k
′

2⊥ = z′q⊥ − k
′

⊥ ,

k+
1 = (1 − z)q+, k+

2 = zq+, k1⊥ = (1 − z)q⊥ + k⊥, k2⊥ = zq⊥ − k⊥ . (19)

By considering the good component as “µ = +”, the hadronic matrix elements in Eq. (3)

can be rewritten as:

〈γ(q)|s+
+γ5u+|K(p + q) 〉 = −e

FA

2mK

(ǫ∗⊥ · q⊥) p+ ,

〈γ(q)|s+
+u+|K(p + q) 〉 = −ie

FV

2mK

ǫijǫ∗i qjp
+ . (20)

Using Eq, (19), the trace part Iµν in Eq. (17) can be carried out. By comparing Eq. (16)
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with Eq. (20), we obtain the form factors FV,A to be:

FA(p2) = 4mK

∫
dz d2k⊥

2(2π)3
Φ
(
z′, k2

⊥
) 1

1 − z′

×
{

2

3

mu − Ak2
⊥Θ

m2
u + k2

⊥
+

1

3

ms + Bk2
⊥Θ

m2
s + k2

⊥

}
,

FV (p2) = 8mK

∫
dz d2k⊥

2 (2π)3 Φ
(
z′, k2

⊥
) 1

1 − z′
{

2

3

mu − z′ (ms − mu) k2
⊥Θ

m2
u + k2

⊥
− 1

3

ms + (1 − z′)(ms − mu)k
2
⊥Θ

m2
s + k2

⊥

}
, (21)

where

A = (1 − 2z)z′(ms − mu) − 2zmu ,

B = (1 − 2z)z′ms + ms + (1 − 2z)(1 − z′)mu ,

Φ(z, k2
⊥) = N

(
z(1 − z)

2[M2
0 − (ms − mu)2]

)1/2
√

dkz

dz
exp

(
−

~k2

2ω2
K

)
,

Θ =
1

Φ(z, k2
⊥)

dΦ(z, k2
⊥)

dk2
⊥

,

z′ = z

(
1 − p2

M2
K

)
, ~k = (~k⊥, ~kz) ,

N = 4

(
π

ω2
K

) 3

4

, kz =

(
z − 1

2

)
M0 +

m2
s − m2

u

2M0
,

M2
0 =

k2
⊥ + m2

u

z
+

k2
⊥ + m2

s

1 − z
. (22)

III. DIFFERENTIAL DECAY RATE

In the K+ rest frame, the partial decay rate for K+ → e+νeγ is given by [1]

dΓ =
1

(2π)3

1

8mK

| M |2 dEγdEe , (23)

where Eγ and Ee are photon and electron energies, respectively. To describe the kinematics

of K+ → e+νeγ, we introduce two dimensionless variables, defined by x = 2Eγ/mK and

y = 2Ee/mK , with their physical allowed regions being

0 ≤ x ≤ 1 − re ,

1 − x +
re

1 − x
≤ y ≤ 1 + re , (24)
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where re = m2
e/m

2
K . The relation between the transfer momentum p2 and x is given by:

p2 = m2
K(1 − x). (25)

From Eqs . (1) and (23), we obtain the double differential decay rate of K+ → e+νeγ as

d2Γ

dx dy
=

m5
K

64π2
αG2

F sin2 θc(1 − λ)A(x, y), (26)

where λ = (x + y − 1 − re)/x and

A(x, y) = AIB(x, y) + ASD+(x, y) + ASD−(x, y) + AINT+(x, y) + AINT−(x, y) ,

AIB(x, y) =
4re|FK |2
m2

Kλx2

[
x2 + 2(1 − re)

(
1 − x − re

λ

)]
,

ASD+(x, y) = |FV + FA|2
x2λ2

1 − λ

(
1 − x − re

λ

)
,

ASD−(x, y) = |FV − FA|2x2(y − λ) ,

AINT+(x, y) = − 4re

mK
Re[FK(FV + FA)∗]

(
1 − x − re

λ

)
,

AINT−(x, y) =
4re

mK
Re[FK(FV − FA)∗]

1 − y + λ

λ
. (27)

By integrating out the y variable in Eq. (26), we obtain the differential decay rate as a

function of x to be

dΓ

dx
=

m5
K

64π2
αG2

F sin2 θcA(x) (28)

where

A(x) = AIB(x) + ASD+(x) + ASD−(x) + AINT+(x) + AINT−(x) ,

AIB(x) =
4reF

2
K

m2
K

[
(x + re − 1)[x2 + 4(1 − re)(1 − x)]

1 − x

−x2 + 2(1 − re)(1 − x + re)

x
ln

re

1 − x

]
,

ASD+(x) = |FV + FA|2x3

[
1 − x

3
− re

2
+

r3
e

6(1 − x)2

]
,

ASD−(x) = |FV − FA|2x3

[
1 − x

3
− re

2
+

r3
e

6(1 − x)2

]
,

AINT+(x) =
4re

mK
Re[FK(FV + FA)∗]x

[
1 − x

2
− r2

e

2(1 − x)
+ re ln

re

1 − x

]
,

AINT−(x) =
4re

mK

Re[FK(FV − FA)∗]x

[−1 + 3x

2
+

r2
e − 2xre

2(1 − x)
+ (x − re) ln

re

1 − x

]
. (29)

It is clear that the contributions to the decay rate from the IB and INT± parts are sup-

pressed due to the small electron mass.
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IV. NUMERICAL RESULTS

The numerical values of FA,V (p2) in the ChPT of O(p6) have been shown in Figs. 5 and

6 of Ref. [10]. To compare these values with those in the LFQM, we plot the results in Figs.

1 and 2. In these figures, we have also included the results in the ChPT at O(p4). For the

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

F V

p2 (GeV2)

 ChPT O(p4)
 ChPT O(p6)
 LFQM

FIG. 1: FV (p2) as a function of the transfer momentum p2.

calculations of the ChPT [10], we have taken mK = 0.495, mπ = 0.14, mη = 0.55 and mρ =

0.77, FK = 0.112 GeV and the renormalized coefficients of (Lr
1, L

r
2, L

r
3, L

r
9, L

r
10), (Cr

7 , C
r
11, C

r
22)

and (yr
100, y

r
104, y

r
109, y

r
110) to be (0.53, 0.71,−2.72, 6.9,−5.5)×10−3 [23], (0.013,−6.37, 6.52)×

10−3 GeV −2 [24] and (1.09,−0.36, 0.40,−0.52)× 10−4/F 2
K [25], respectively. For some other

possible sets of coefficients, see Ref. [10] as well as the recent review in Ref. [26]. We note

that we have ignored the contributions from p2-nondependent terms involving yr
i . On the

other hand, the p2-dependence of FA(p2) for the ChPT at O(p6) are insensitive due to the

small contributions related to yr
i [10]. We emphasize that as illustrated in Figs. 1 and 2,

the form factors FV,A at O(p4) in the ChPT are constants [4]. To evaluate the form factors

of FV,A from Eq. (21) in the LFQM , we have used mu = 0.26, ms = 0.37 and ωK = 0.382

in GeV . In Table I, we explicitly display the values of FV,A(p2 = 0).

By integrating out the variable x in Eq. (28), in Table II we give the decay branching

ratio of K+ → e+νeγ in (a) the ChPT at O(p4), (b) the ChPT of O(p6) and (c) the LFQM.
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FIG. 2: FA(p2) as a function of the transfer momentum p2.

TABLE I: The form factors of FV (0) and FA(0) in (a) the ChPT at O(p4) [4], (b) the ChPT of

O(p6) and (c) the LFQM.

Model FV (0) FA(0)

(a) 0.0945 0.0425

(b) 0.082 0.034

(c) 0.106 0.036

Here, as the IB term diverges at the limit of x → 0 corresponding to p2 → p2
max = m2

K ,

we have used the cuts of x = 0.01 and 0.1, respectively. With the cuts, from Table II we

see that both IB and INT± contributions are much smaller than the SD± ones, which are

insensitive to the cut. We remarks that in Table II, our results for the SD+ contribution

to the decay branching ratio in the ChPT of O(p6) and LFQM are 1.15 and 1.12 × 10−5,

which are smaller than that of 1.52± 0.23× 10−5 [5, 6] quoted by the PDG [1], respectively.

Note that the value in the PDG was based on the combination of the data in Refs. [5] and

[6], in which large constant values of FA + FV = 0.150+0.018
−0.023 and 0.147 ± 0.011 were used,

respectively. It is clear that to compare the data with the theoretical predictions, proper

form factors should be used in the data analysis.
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To show the behaves of the various contributions in the ChPT and LFQM, we present the

IB and SD± parts of the differential decay branching ratio as functions of x in Fig. 3. Here,

we do not plot the INT± contributions in Fig. 4 as they are vanishingly small. As shown in

the figure, in the small x region there is an enhancement for the IB part, whereas those from

the SD± parts are close to zero. In Fig. 4, we also display the spectrum of the differential

decay branching ratio vs. x in the ChPT at both O(p4) and O(p6) and the LFQM.

TABLE II: The decay branching ratio of K+ → e+νeγ (in units of 10−5) in (a) the ChPT at O(p4),

(b) the ChPT of O(p6) and (c) the LFQM with the cuts of x = 0.01 and x = 0.1, respectively.

Model Cut IB SD+ SD− INT+ INT− Total

(a) x = 0.01 1.65 × 10−1 1.34 1.93 × 10−1 6.43 × 10−5 −1.10 × 10−3 1.70

x = 0.1 0.69 × 10−1 1.34 1.93 × 10−1 6.43 × 10−5 −1.10 × 10−3 1.60

(b) x = 0.01 1.65 × 10−1 1.15 2.58 × 10−1 6.22 × 10−5 −1.21 × 10−3 1.57

x = 0.1 0.69 × 10−1 1.15 2.58 × 10−1 6.22 × 10−5 −1.21 × 10−3 1.47

(c) x = 0.01 1.65 × 10−1 1.12 2.59 × 10−1 4.33 × 10−5 −1.29 × 10−3 1.54

x = 0.1 0.69 × 10−1 1.12 2.59 × 10−1 4.33 × 10−5 −1.29 × 10−3 1.44
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FIG. 3: The IB and SD± parts of the differential decay branching ratio as functions of x = 2Eγ/mK .
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FIG. 4: The differential decay branching ratio as a function of x = 2Eγ/mK .

From Fig. 4, we see that in the region of x < 0.7 or Eγ < 173 MeV, the decay branching

ratio in the LFQM is much smaller than that in the ChPT at O(p6). On the other hand, in the

region of x > 0.7 the statement is reversed. However, if we only consider the contributions in

the ChPT at O(p4), the conclusion is weaker. In Table III, we illustrate the decay branching

ratio in the regions of 0.1 < x < 0.7 and 0.7 < x < 1 from the various approaches,

respectively. The main reasons for the differences are due to the form factors. The form

TABLE III: The decay branching ratio of K+ → e+νeγ (in units of 10−5) in the regions of

0.1 < x < 0.7 and 0.7 < x < 1 from the various approaches, respectively.

Region ChPT of O(p4) ChPT of O(p6) LFQM

0.1 < x < 0.7 0.871 0.871 0.541

0.7 < x < 1 0.733 0.606 0.902

factors of the ChPT at O(p4) are constant and straight lines at O(p6), whereas in the LFQM

they are the overlap between the wave functions of the K meson and photon and become

zero when x → 0 or p2 → p2
max = m2

K . It is clear in the future data analysis such as the

one at the experiment BNL-E949 [8], one could concentrate on these two regions to find out

which model is preferred.
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V. CONCLUSIONS

We have studied the axial-vector and vector form factors of the K+ → γ transition in

the LFQM and ChPT of O(p6). Based on these form factors, we have calculated the decay

branching ratio of K+ → e+νeγ. We have demonstrated that the SD part gives the dominant

contribution to the decay in the whole allowed region of the photon energy except the low

endpoint. Explicitly, we have found that, in the SM with the cut of x = 0.01 (0.1), the

decay branching ratio of K+ → e+νeγ is 1.54 (1.44) × 10−5 and 1.57 (1.47) × 10−5 in the

LFQM and ChPT, respectively. Future precision experimental measurements on the decay

spectrum [8] should give us some useful information to determine the SD contribution as

well as the vector and axial-vector form factors.
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