A MEASUREMENT OF K_{evo}^+ DECAY^{1,2}

K.S. HEARD³, J. HEINTZE, G. HEINZELMANN, P. IGO-KEMENES, W. KALBREIER, E. MITTAG⁴ H. RIESEBERG, B. SCHÜRLEIN⁵, H.W. SIEBERT, V. SOERGEL, K.P. STREIT A. WAGNER and A.H. WALENTA

CERN, Geneva, Switzerland and Erstes Physikalisches Institut der Universitdt Heidelberg, Germany

Received 17 December 1974

The decay $K^+\rightarrow e^+\nu\gamma$ has been observed. In a counter experiment at CERN, 56 events of this type have been identified by detection of a γ with an energy > 100 MeV and of an e⁺ with an energy between 236 MeV and the maximum e⁺ energy, 247 MeV. The angle between γ and e⁺ was > 120°. Thus, the experiment was sensitive only to the structure decay (SD) term proportional to the squared sum of vector- and axialvector amplitudes, $|v_K + a_K|^2$, corresponding to the emission of right handed γ . We find

 $\Gamma_{+}(\text{SD})/\Gamma(K_{\text{e}2}) = 1.05^{+0.25}_{-0.30}$ and $\Gamma_{-}(\text{SD})/\Gamma_{+}(\text{SD}) < 85$ (90% CL).

 Γ_{+} is in agreement with theoretical predictions.

We report on a measurement of the structure term in radiative K_{e2} decay, K⁺ \rightarrow e⁺ $\nu\gamma$ (K⁺_{e $\nu\gamma$}), which was performed concurrently with a measurement of the K_{e2}/K_{u2} branching ratio [1].

There are two effects contributing to $K_{e\nu\gamma}$ decay: internal bremsstrahlung (IB), where a soft γ is emitted by the electron, and structure decay (SD), where a high energy γ is emitted from the interaction vertex. A measurement of SD therefore gives information on the states coupling the kaon to the leptons.

SD is described by vector- and axialvector amplitudes v_K and a_K ; v_K can be calculated assuming saturation of the intermediate states by the K^* and K_A mesons. Various calculations agree with each other within 20%. We quote the result of ref. [6] :

$$
v_{\rm K}(q^2) = \frac{0.12}{m_{\rm K}(1-q^2/m_{\rm K^*}^2)}, \quad q^2 = (p_{\rm e} + p_{\gamma})^{\mu} (p_{\rm e} + p_{\gamma})_{\mu}.
$$

- **¹**A preliminary result has been reported at the lind Intern. Aix-en-Provence Conf. on High Energy Physics, 1973.
- Work supported by the Bundesministerium für Bildung und Wissenschaft.
- ³ Now at AERE, Harwell, Didcot, Berk., England.
- 4 Now at Scientific Control Systems, D 2000 Hamburg, U'ber seering 8.
- s Now at IDAS GmbH, D 6250 Limburg, Kornmarkt 9.

Estimates of the ratio $|a_K/v_K|$ yield results between 0.05 and 0.58.

IB and SD dominate in markedly different regions of the $K_{\text{e}v\gamma}^+$ Dalitz plot. IB produces low energy γ at small angles $\theta_{e\gamma}$ to the e⁺. SD has two non-interfering terms for positive and negative γ -helicities, which will be denoted SD_+ and SD_- . Both produce a γ -spectrum with an average energy of 160 MeV, with different $e^+\gamma$ and $\nu\gamma$ angular correlations. For the SD₊ term, 98% of the γ -rays are emitted with angles $\theta_{e\gamma} > 90^\circ$, and the $\nu\gamma$ angular correlation is nearly isotropic. For the SD₋ term, the situation is reversed: The $e^+\gamma$ correlation is nearly isotropic, while $\theta_{\nu\gamma}$ > 90° for 98% of the decay events. Consequently, the electron spectrum of SD_+ is peaked at the maximum energy E_{max} = 247 MeV, while that of SD_ is peaked at $\frac{1}{2}E_{\text{max}}$. Interference terms between IB and SD are negligible. Details on form factors and kinematics can be found in refs. $[2-9]$.

The SD₊(SD₋) rate is proportional to $(v_K + a_K)^2$ $\times ((v_{K} - a_{K})^{2}).$

So far, only an upper limit for SD,

 $\Gamma(SD)/\Gamma(all)$ < 1.3 × 10⁻⁵, has been reported [10].

In view of the small branching ratio, $K_{e\nu\gamma}$ decay can be studied only at e÷-energies above the endpoint of the K_{e3} spectrum at 228 MeV. In our experiment, we accepted $E_e \ge 236$ MeV, $\theta_{e\gamma} \ge 120^\circ$ and $E_{\gamma} \ge 100$ MeV. In this kinematical region, IB is

Fig. 1. e^+ momentum spectrum of $K_{e\nu\gamma}$ candidates. Smooth curves are calculated spectra, normalised to the observed spectrum above $p_e = 236$ MeV/c (a, b) or $p_e = 215$ MeV/c (c): a) SD₊ term in K_{eyy} decay, \longrightarrow , b) SD₋ term in K_{eyy} decay, $---, c)$ K_{e3} decay, $---$.

expected to be three orders of magnitude smaller than SD. Due to the different e^+ - γ angles, the fraction of events within this region is two orders of magnitude larger for SD_+ than for SD_- .

The apparatus and the experimental method is described in ref. $[1]$. Only the part A_I of the hodoscope behind the magnet is used in the analysis of $K_{e\nu\gamma}$ events. Due to the geometrical arrangement of the γ detector and the high momentum cut in the $e⁺$ spectrum, about 75% of the $e^+\gamma$ -coincidences from $K_{e\nu\gamma}$ decay have their e^+ detected in A_I .

Candidates for $K_{e\nu\gamma}$ decay are selected from the sample of electron triggers (mode 2, see ref. [1]) by application of the same criteria to the $K⁺$ decay time and to the signal of the gas Cerenkov counter as for the K_{ρ} candidates (criteria 1 and 3 in ref. [1]), and by the additional requirement, that the γ -detector shows a signal in coincidence with the gas Cerenkov counter.

The selection of electron candidates for K_{e2} decay is also described in ref. $[1]$. For K_{e2} candidates, the absence of a signal from any γ -counter phototube is demanded to suppress K_{e3} decay relative to K_{e2} decay. This causes a loss of (13 \pm 4)% of all events due to accidental γ -counter signals, as evaluated from observed K_{u2} decays. (Note that this loss does not influence the K_{e2}/K_{u2} branching ratio).

Fig. 2. γ energy spectrum of Key candidates with $p_e \geq 236$ MeV/c. Smooth curves are calculated spectra, normalised to the observed spectrum above E_{γ} = 150 MeV: a) SD_+ term, $-\cdots$, b) SD_- term, $-\cdots$.

After subtracting the background from random gas Cerenkov counter and γ -counter signals, we obtain the electron spectrum shown in fig. 1. The $K_{e\nu\gamma}$ decays are clearly visible above the upper edge of the K_{e3} spectrum. Fig. 1 also shows the shape of the K_{e3} spectrum, which was calculated taking into account bremsstrahlung in the target and surrounding counters, and the spectrometer resolution, as determined from observed $K_{\mu 2}$ decays (p_{μ} = 236 MeV/c).

Above 236 MeV/ c , the electron spectrum contains 56 events, which we ascribe to $K_{e\nu\gamma}$ decays. Background from K_{e2} decays with an accidental γ -counter signal and from K_{e3} decays with a high energy e^+ from either a Dalitz pair or a γ conversion is calculated to be less than one event.

The γ energy spectrum of the events with $p_e \ge 236$ MeV/c is shown in fig. 2. In both figures, the line shapes expected for the contributions from SD_+ and SD_- decay are also shown. From the comparison of observed and calculated line shapes, we find an upper limit of 7 events (68% CL) for a contribution from the SD_ term (14 events with 90% CL). The number of observed SD_+ events with its statistical error then is 56^{+18}_{-12} .

The fraction of $K_{e\nu\gamma}$ events with observed e⁺ momentum $p_e \ge 236$ MeV/c is $r = 0.174$ for SD₊ and $r = 0.0008$ for SD_, taking into account the spectrometer resolution and bremsstrahlung in the target.

The efficiency of the γ -counter for such $K_{e\nu\gamma}$ events is calculated from the observed efficiency for γ from K_{n2} decays, which are identified by the π^+ momentum and range. The result is $\epsilon_{\gamma} = 0.72 \pm 0.12$ for the SD₊ term and ϵ_{γ} = 0.47 ± 0.20 for the SD_ term.

We determine the $K_{e\nu\gamma}$ branching ratio relative to K_{e2} decay. In that way, the e⁺ detection efficiency drops out. The K_{e2} sample selected with the same e^+ criteria contains 260 events above 240 MeV/ c . The fraction of events above this cutoff is calculated to be 0.70 ± 0.20 [1]. We also have to include the loss of $(13 \pm 4)\%$ due to random signals from the γ -counter.

With these numbers we find

$$
\Gamma(K_{e\nu\gamma}^+, SD_+)/\Gamma(K_{e2}) = 1.05^{+0.25}_{-0.30}
$$

Using the $K_{e2}/K_{\mu2}$ branching ratio $R =$ $(2.37 \pm 0.17) \times 10^{-5}$ measured simultaneously in our apparatus $[1]$, we obtain

$$
\Gamma(K_{e\nu\gamma}^+, SD_+) = (1280^{+320}_{-380}) \text{ sec}^{-1}.
$$

For the SD term, we find an upper limit

 $\Gamma(SD_{})/\Gamma(SD_{+}) < 85$ (90% CL).

To compare our result with theoretical predictions, we use the SD_+ rate to calculate

$$
m_{\rm K} |v_{\rm K} + a_{\rm K}| \sin \vartheta_{\rm c} = (3.3^{+0.4}_{-0.5}) \times 10^{-2},
$$

where ϑ_c is the Cabibbo angle.

For the Cabibbo angle we may choose sin $\vartheta_c =$ 0.212 as derived from the K_{e3} decay rate, or sin ϑ_c = 0.269 as derived from the $K_{\mu2}/\pi_{\mu2}$ branching ratio [11]. From hyperon decays, one has sin $\vartheta_c = 0.237$ [12]. This range of possible values of the Cabibbo angle gives a larger uncertainty for the amplitudes than the experimental uncertainty. We find

$$
0.10 < m_{\rm K} \left| v_{\rm K} + a_{\rm K} \right| < 0.18,
$$

which is in agreement with the predictions

$$
m_{\rm K} |v_{\rm K}(q^2 = 0.4/m_{\rm K}^2)| = 0.14
$$

and

 $0.05 < |a_K|/v_K$ | < 0.6.

In principle, a_K/v_K could be determined from the ratio of the $SD_$ and SD_+ rates independently from the Cabibbo angle, if one only assumes the same Cabibbo angle for V and A currents. This would, however, require measurements at lower electron energies, which seems to be prohibited by abundant background from K_{e3} decay. From our limit on the SD_{$-$} rate, we find

$$
|v_K - a_K|/|v_K + a_K| < 9
$$
 (90% CL).

We thank Dr. D. Gromes for enlightening discussions on the theoretical aspects of $K_{e\nu\gamma}$ decay.

References

- [1] K.S. Heard et al. Phys. Lett. 55B (1975) 327.
- [2] D.E. Neville, Phys. Rev. 124 (1961) 2037.
- [3] S.G. Brown and S.A. Bludman, Phys. Rev. 136 (1964) Bl160.
- [4] H. Namaizawa, Progr. Theor. Phys. 39 (1968) 860.
- [5] A.Q. Sarker, Phys. Rev. 173 (1968) 1749.
- [6] R. Rockmore, Phys. Rev. 177 (1969) 2573.
- [7] N.J. Carton and R.L. Schult, Phys. Rev. D1 (1970) 3171.
- [8] M.G. Smoes, Nucl. Phys. B20 (1970) 237.
- [91 D.Yu. Bardin and S.M. Bilenkii, Yad. Fiz. 16 (1972) 557; [Soy. J. Nucl. Phys. 16 (1973) 311].
- [10] R.J. Macek et al., Phys. Rev. D1 (1970) 1249.
- [11] L.-M. Chounet et al., Phys. Reports 4C (1972) 199.
- [12] See, for example, M. Roos, Phys. Lett. 36B (1971) 130.