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a b s t r a c t 
This article briefly reviews the current status and near-term prospects of experimental 
searches for neutrinoless double-beta decay. After discussing the motivation and history 
of neutrinoless double-beta decay, we will focus on the status of current experiments and 
the factors limiting their sensitivity. We will then discuss the prospects and requirements 
for proposed experiments that will probe the inverted neutrino mass hierarchy. 
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1. Introduction and motivation 
Neutrinos are fundamental particles within the Standard Model of particle physics. They are the only fermions that do 

not carry electrical charge and they also have no color charge. The only quantum number that can be used to distinguish 
between neutrino ( ν) and anti-neutrino ( ̄ν) states is lepton number. However, there is no gauge symmetry associated with 
lepton number and there is no fundamental reason this quantity should be conserved. There are many extensions to the 
Standard Model that do not require lepton number conservation. If lepton number is violated, the distinction between ν
and ν̄ is unclear and it becomes possible that neutrinos can be their own anti-particles or so-called Majorana fermions [1] . 
In contrast, all other Standard Model fermions have distinct anti-particle states and are known as Dirac fermions. 

Interestingly, experimental results to date are consistent with both Majorana and Dirac neutrinos. Determining the nature 
of neutrinos is difficult because of the small neutrino masses and the handedness of the weak interaction, but a promising 
approach is to search for the neutrinoless double-beta decay ( ββ(0 ν)-decay) of an atomic nucleus, given as [2,3] : 

(A, Z) → (A, Z + 2) + 2 e − (1) 
It is obvious that this is also a lepton number violating ( #L = 2 ) process. Though many different processes could poten- 
tially mediate this decay, such as the exchanges of massive Majorana neutrinos or supersymmetric particles (see [4,5] for a 
review), just the observation of this decay is sufficient to show that the neutrino is a Majorana fermion [6] . 

Collider experiments, such as the LHC, are able to probe lepton number violating processes that could contribute to 
ββ(0 ν)-decay [5,7–16] , but direct searches for the decay are the only way to probe the Majorana vs. Dirac nature of the 
neutrino in a model-independent manner. Any limits or direct measurements of the half-life of ββ(0 ν)-decay can also be 
used to constrain the absolute neutrino mass scale, assuming that the ββ(0 ν)-decay process is dominated by the exchange 
of massive Majorana neutrinos. The next generation of experiments will attempt to have sensitivity down to 10 − 20 meV 
for the effective majorana neutrino mass, which would cover the so-called inverse neutrino mass hierarchy regime. How- 
ever, unravelling the contributions from other new physics could make the implications of a definitive half-life measurement 
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Table 1 
Some ββ(0 ν)-decay isotopes of experimental interest that are discussed 
in this paper, shown with most recent half-life limits. Natural abundances 
and Q -values taken from [28] . 

Isotope ββ(0 ν) Half-life limit Natural Q -value (MeV) 
(years) Abundance [%] 

48 Ca > 1.4 × 10 22 [31] 0 .187 4.2737 
76 Ge > 3.0 × 10 25 [32] 7 .8 2.0391 
82 Se > 1.0 × 10 23 [33] 9 .2 2.9551 
100 Mo > 1.1 × 10 24 [34] 9 .6 3.0350 
130 Te > 4.0 × 10 24 [35] 34 .5 2.5303 
136 Xe > 1.1 × 10 25 [36] 8 .9 2.4578 
150 Nd > 1.8 × 10 22 [37] 5 .6 3.3673 

for neutrino mass difficult to quantify [4,5,17] . In addition, the nuclear physics involved in the decay requires the difficult 
calculation of nuclear matrix elements (NMEs) to relate the observed decay rate to neutrino mass (see [18–20] for recent 
reviews). Despite this, ββ(0 ν)-decay mass constraints are still complementary to those from direct neutrino mass experi- 
ments, such as Tritium-endpoint measurements like KATRIN [21] and Project 8 [22] , electron-capture experiment like ECHo 
[23] , and cosmology [24] . See [25,26] for recent reviews of direct mass measurement experiments. 

This paper provides a very brief review of the current status of experimental searches for ββ(0 ν)-decay and the chal- 
lenges that they face as they scale to the next generation. The literature related to ββ(0 ν)-decay is extensive and for 
more detailed recent reviews of the phenomenology and experimental aspects of ββ(0 ν)-decay, the reader is referred 
to [16,18,27–29] . 
2. The experimental approach and challenges 

Though ββ(0 ν)-decay is energetically allowed for many isotopes, only 35 of these are stable against or have highly 
suppressed single beta decays and are of experimental use [30] . Further considerations, described below, apply additional 
constraints to which isotopes are suitable. Shown in Table 1 are a list of isotopes of particular experimental interest that 
will be discussed in this paper. Note that the half-life limits are extremely long ( ∼10 24 yr.) and sets the scale for the next 
generation of experiments. 
2.1. Signal detection 

ββ(0 ν)-decay is characterized by the nuclear emission of two electrons and no anti-neutrinos. The recoil energy of the 
nucleus is negligible and most of the energy is carried away by the electrons. The most direct experimental approach is 
to measure the sum energy of the electrons, since ββ(0 ν)-decay will manifest as a characteristic peak in the sum energy 
spectrum at the Q -value of the decay. Other information can also be collected. Tracking detectors can reconstruct the topol- 
ogy of the event and distinguish events with two electrons emitted, such as ββ(0 ν)-decay, from events that yield a single 
electron. The latter includes normal beta decay or a Compton recoil from a scattered gamma-ray. Atomic techniques can be 
applied to identify the daughter isotope as additional confirmation of a ββ(0 ν)-decay event, as discussed below. 
2.2. Radioactive backgrounds 

The most significant experimental challenge for ββ(0 ν)-decay experiments is the reduction of ionizing radiation back- 
grounds. Certain naturally occurring radio-isotopes can create background events in ββ(0 ν)-decay searches that mimic 
ββ(0 ν)-decay signals. Long-lived primordial isotopes like 232 Th and 238 U are ubiquitous in the earth’s crust and all con- 
struction and target materials. The high-energy gamma-rays that some of their daughters emit during decays can undergo 
ionizing interactions in the detector materials that mimic ββ(0 ν)-decay signals or interfere with analysis cuts. For exam- 
ple, 208 Tl in the 232 Th decay chain emits an intense line at 2.614 MeV that is above the Q -value of several ββ(0 ν)-decay 
isotopes of interest, and 214 Bi from the 238 U decay chain emits gamma-rays at many different energies out to 3184 keV. 
ββ(0 ν)-decay experiments resort to extreme measures to improve the radiopurity of construction and target materials 
in order to remove these radioactive isotopes, though which backgrounds dominate and what measures are required are 
experiment-specific. ββ(0 ν)-decay experiments also require shielding against environmental gamma-rays via high-density 
materials (ie. lead), cryogenic liquids, water, or combinations thereof. Some shielding designs are instrumented to provide 
additional background veto power. Experiments that use lead as shielding may even use archaeological lead that is low in 
radioactive 210 Pb, which has a half-life of 22.2 years [38] . 

222 Rn is part of 238 U decay chain, has a half-life of 3.82 days, and is an especially pernicious background. It seeps from 
rocks, concrete, and detector construction materials and is a chemically inert noble gas. When it decays, the daughter ion 
is electrostatically attracted to nearby surfaces, making plate-out a significant concern, especially in bolometric and other 

2018.01.08
11:58

2018.01.10
10:26

<< CUORE record 2015

SNO+はまだR&D段階



R. Henning / Reviews in Physics 1 (2016) 29–35 31 
detectors that have sensitive surfaces. In addition, 214 Bi is a daughter isotope of 222 Rn, which provides a background of 
gamma-rays. All ββ(0 ν)-decay experiments require some form of Rn mitigation. 

All isotopes that can undergo ββ(0 ν)-decay can also undergo a related decay called two neutrino double-beta decay 
( ββ(2 ν)-decay), given as: 

(A, Z) → (A, Z + 2) + 2 e − + 2 ̄νe (2) 
This is an allowed second-order weak process that has been observed in isotopes of experimental interest with half-lives 
on the order of 10 20 years [27] . From kinematic arguments it follows that the electrons emitted in this decay have a broad 
continuum up to the Q -value of the decay. The only way to discriminate these ββ(2 ν)-decay from ββ(0 ν)-decay is via 
energy, making experimental energy resolution particularly important. 

Finally, all modern ββ(0 ν) experiments require underground locations to reduce cosmic-ray induced backgrounds. Muons 
produced via cosmic-ray interactions in the upper atmosphere are extremely penetrating and can interact directly with the 
target volume or produce secondary particles via hadronic or electromagnetic interactions in surrounding materials. They 
can also cause delayed events by activating detector materials and producing so-called cosmogenic radioactive isotopes, such 
as 60 Co in copper, a common construction material in ββ(0 ν)-decay experiments. Current experiments require depths on 
the order of 1 km or greater to mitigate prompt cosmic-ray backgrounds. 
3. Major experimental efforts 

In this section we will discuss the major experimental efforts that are currently underway, focussing on experiments that 
have a demonstrated a path to deploying approximately a tonne of ββ(0 ν)-decaying isotope or more. We will also briefly 
discuss other effort s. 
3.1. 130 Te program 

130 Te has the highest natural abundance of any ββ(0 ν) isotope (34.5%), making it an attractive candidate. It has a good 
Q -value of 2527.518 ± 0.013 keV, though it is close to the sum energy (2505.7 keV) of the gammas emitted in the decay of 
cosmogenic 60 Co from copper. There are currently two major efforts underway to search for ββ(0 ν)-decay in this isotope. 
3.1.1. CUORE 

The Cryogenic Underground Observatory for Rare Events (CUORE) [38] is in the final stages of construction at a depth of 
3400 m.w.e. (meters water equivalent) in the Laboratori Nazionali del Gran Sasso (LNGS) near L’Aquila, Italy. It uses cryo- 
genic bolometers [39,40] made from natural (unenriched) tellurium oxide. Each bolometer is a crystal of 5 × 5 × 5 cm 3 
operated at 10 mK. At this temperature the heat capacity of the crystals is extremely small and microscopic energy deposits, 
such as those from ββ(0 ν)-decays, can yield measurable temperature changes. The temperature of each crystal is measured 
with a neutron-transmutation-doped Ge thermistor. In CUORE the crystals will be arranged in 19 towers of 52 crystals each, 
providing a 130 Te mass of 200 kg. The tower supports will be constructed from low-background copper and polytetraflu- 
oroethylene (PTFE). CUORE will be shielded by a low-activity lead shield that includes archaeological Roman lead, as well 
as neutron moderators and radon exclusion system. The electrolytic copper used in the cryostat will provide additional 
shielding. 

CUORE is the current stage of a series of experiments of increasing mass and sensitivity that use the bolometric tech- 
nique. Most recently, the CUORE collaboration deployed a single string and performed a search for ββ(0 ν)-decay. This exper- 
iment was called CUORE-0 and was able to achieve a ββ(0 ν)-decay limit of T 1 

2 > 4 . 0 × 10 24 y in 130 Te [35] from 9.8 kg.y of 
exposure. CUORE hopes to achieve a 10-year sensitivity of 3.5 × 10 26 years with background level of 1 count/t/keV/y [38] . 
The CUORE approach has very good energy resolution and scalability. Its main drawbacks are background contamination, 
especially on or near crystal surfaces, complicated cryogenics, and signal readout. 
3.2. SNO + 

The SNO + detector is an upgrade of the Sudbury Neutrino Observatory (SNO) detector [41] . SNO consisted of a 12 m 
diameter transparent acrylic vessel that was filled with 1 kiloton of ultra pure heavy water (D 2 O) [42] . The acrylic vessel 
was submerged in normal (light) water and observed by approximately 9,500 phototubes. SNO was located in the SNOLAB 
laboratory at a depth of 60 0 0 m.w.e. in the Creighton mine near Sudbury, ON in Canada. SNO + is using a substantial portion 
of the existing SNO infrastructure to field a new neutrino experiment with a primary physics goal being searching for the 
ββ(0 ν)-decay of 130 Te. It will also have a physics program based on observing neutrinos from terrestrial and astrophysical 
sources. SNO + will use an organic liquid scintillator, Linear Alkyl Benzene (LAB) with a PPO fluor (2,5-diphenyloxazole), 
loaded with 130 Te as detection medium, replacing the heavy water medium from SNO. In addition, SNO + will also utilize 
new purification systems, improved PMTs, an improved data acquisition, and a new mechanical support system to accom- 
modate the change in buoyancy between LAB and light water [43] . 

SNO + will be able to field a very large mass of isotope but suffers from poor energy resolution compared to other ββ(0 ν) 
experiments. This makes determining the background and energy calibration extremely important, since the experiment will 
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rely on a statistical subtraction of the residual backgrounds. The SNO + background will be dominated by ββ(2 ν) events and 
8 B solar neutrinos that scatter elastically off electrons [43] . Other backgrounds from U/Th contamination and the rock wall 
are mitigated with material selection, purification, and fiducialization. If this technique works, it may be even possible to 
scale it to probe the normal neutrino hierarchy [44] . 

SNO + is proposing two stages. In the first stage it will be loaded with at least 0.3% (2340 kg) of natural tellurium, equiv- 
alent to 800 kg of 130 Te. During this phase, which is anticipated to start in 2017, the goal sensitivity is T 1 

2 > 9 . 4 × 10 25 y 
(90% CL) or a 3 σ detection limit at T 1 

2 > 6 . 9 × 10 25 y . Once the detector concept and purification has been demonstrated, 
the next phase will increase the isotope loading to 3% (8 tonnes of 130 Te) and replace the PMTs with high quantum ef- 
ficiency R5912-HQEs. For this phase the sensitivity goal would be T 1 

2 > 7 × 10 26 y (90% CL) or a 3 σ detection limit at 
T 1 

2 > 4 × 10 26 y [45] . 
3.3. 136 Xe program 

136 Xe is a unique isotope because Xenon is a scintillating, noble gas, which allows for different experimental approaches 
from other isotopes. There are three major efforts at different levels of development to search for the ββ(0 ν)-decay of 136 Xe. 
3.3.1. KamLAND-Zen 

KamLAND-Zen [46] is also an upgrade of a previous neutrino experiment, in this case KamLAND, which measured reac- 
tor neutrino fluxes. KamLAND-Zen is located inside the Kamioka mine near Toyama city, Japan. In KamLAND-Zen, enr Xe is 
dissolved in the liquid scintillator contained in a 1.5 m balloon inside the original KamLAND detector. The volume outside 
the balloon is also filled with scintillator, providing a powerful active shield against external backgrounds. 

For its first phase, KamLAND-Zen deployed 179 kg of Xe enriched to 91.7% in 136 Xe. It started in 2011 and collected 
85 kg.yr of exposure. Unfortunately the experimental sensitivity was hampered by unexpected 110 m Ag contamination of the 
balloon that yielded a peak very near the ββ(0 ν)-decay endpoint. The 110 m Ag likely originated from the Fukushima Daiichi 
nuclear disaster. Despite this contamination the KamLAND-Zen collaboration was able to set a limit of T 1 

2 > 1 . 9 × 10 25 y (90% 
CL) [46] . The collaboration replaced the balloon and also loaded additional isotope for a total mass of 383 kg for the second 
phase. They collected only an additional 27.6 kg.years of exposure, but reduced the 110 m Ag background by a factor of 10. By 
combining the two phases, KamLAND-Zen was able to achieve T 1 

2 > 2 . 6 × 10 25 y (90% CL) [47] . 
In the near future KamLAND-Zen plans to rebuild the mini-balloon using cleaner material and to increase the Xe amount 

to 600 kg. With this, they hope to achieve a half-life sensitivity of 2 × 10 26 y. Beyond that the collaboration proposes a major 
detector upgrade called “KamLAND2-Zen”, of which the main focus is to improve the energy resolution by introducing light- 
collecting mirrors, new and brighter scintillator, and high quantum efficiency PMTs. They predict it will improve the energy 
resolution from 4.0% to < 2.5% at the Q -value of the 136 Xe decay. They also intend to increase the Xe mass to 1,0 0 0 kg or 
more. With these improvements, they hope to cover the inverted neutrino mass hierarchy down to 20 meV [48] . Though 
KamLAND-Zen has a smaller isotopic mass than SNO+, this is offset by its better energy resolution. 
3.3.2. EXO/nEXO 

The Enriched Xenon Observatory (EXO) uses ultra pure liquid xenon (LXe) that is enriched in 136 Xe as detection medium 
and source [49] . It collects the ionization electrons using a time projection chamber (TPC) to achieve three-dimensional 
event reconstruction. This provides powerful discrimination against Compton-scattered gamma-ray backgrounds that typi- 
cally deposit energy in multiple locations in the LXe. In addition, EXO measures the scintillation light, which provides an ad- 
ditional measurement of the energy deposit. A monolithic, homogeneous detector like EXO has the benefit of self-shielding 
that scales linearly with detector dimension, but at the expense of more enriched material, which scales at the detector 
dimensions cubed. 

The first phase, EXO-200, deployed 150 kg of enriched Xenon in 2011 underground at the Waste Isolation Pilot Plant 
(WIPP) near Carlsbad, NM. It performed searches for ββ(0 ν)-decay [36,50] and in 2014 reported a limit of T 1 

2 > 1 . 1 × 10 25 yr 
at 90% confidence limit. EXO-200 performed extensive and careful materials selection, screening and characterization to 
achieve the lowest background possible [51,52] . In terms of region-of-interest (ROI) performance, EXO-200 achieved an en- 
ergy resolution of 4% FWHM at Q ββ FWHM and a background rate of 1 . 5 × 10 −3 counts / keV / kg / yr , which translates to a 
rate in their ROI of 0.23 counts/kg/yr. 

The next proposed phase for EXO is called nEXO [53,54] . The collaboration proposes to field 5 tonnes of enr Xe in a larger 
cryostat with a goal sensitivity of T 1 

2 > 6 . 6 × 10 27 y (90% CL) after 5 years of running, with a Majorana neutrino mass sen- 
sitivity of 7 − 18 meV . As with EXO, nEXO will be a LXe-based imaging TPC. Major experimental improvements include 
improved self-shielding with the larger mass, increased segmentation for improved event reconstruction, using lower noise 
Silicon photomultipliers instead of APD to improve energy resolution, and a deeper location, such as SNOLAB. Another pos- 
sible future upgrade would be to directly tag or retrieve the daughter Ba ion [55] . 
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3.3.3. NEXT 

A more recent proposal for searching for ββ(0 ν)-decay in 136 Xe, called NEXT (Neutrino Experiment with a Xenon TPC), 
uses enriched gaseous xenon in a high-pressure (15 bar) TPC [56,57] . The lower density of the gas yields longer tracks for 
electrons from ββ(0 ν)-decay that can be reconstructed with a TPC. The increase in ionization energy-loss at the end of 
the electron tracks produce a characteristic “spaghetti and meatball” structure that can be used to determine the direction 
that the electron was traveling. It can also clearly discriminate events that have one or two electrons originating from the 
same vertex, providing a powerful tool to remove backgrounds from external gamma-rays. In addition, this design has better 
demonstrated ROI energy resolution of 0.5%–0.7% in prototypes than the other Xe approaches. Since it is a monolithic and 
homogeneous detector, it has the same benefits of scaling; however it will require a large, low background pressure vessel 
and massive amounts of shielding against external backgrounds that will pose engineering challenges. Possible upgrade 
paths using magnetic fields and Barium-tagging are also under consideration by the collaboration [58] . 
3.4. 76 Ge program 

Germanium is a semiconductor and can be converted into semiconducting radiation detectors that measure ionization 
charges directly. To achieve the required semiconducting properties of the ∼1 kg High-Purity Germanium (HPGe) detectors 
required for gamma-ray spectroscopy, processes have been developed to purify germanium to contamination levels of less 
than one part in 10 12 [59] . These processes also remove residual radioactive contamination from the stock material, though 
experiments still have to contend with cosmic-ray induced isotopes. HPGe detectors have the best energy resolution of any 
ββ(0 ν) technology (0.15% at Q ββ ) that provides powerful background reduction due to the smaller ROI. The high-resolution 
also allows superior identification of residual radioactive contamination via precision gamma-ray spectroscopy. The main 
drawbacks of germanium are the cost of detector fabrication and complexity associated with deploying many detectors in a 
cryogenic, low radioactivity environment. 76 Ge also has a slightly lower Q ββ of 2039 keV than other isotopes of experimental 
interest, which requires that more potential sources of background have to be considered. 
3.4.1. GERDA and the MAJORANA DEMONSTRATOR 

The GERmanium Detector Array (GERDA) [60] experiment utilizes a new approach of submerging an array of 86% en- 
riched HPGe detectors directly in the cryogen, in this case liquid argon (LAr). The LAr provides cryogenic cooling and shield- 
ing against external gamma-rays. The cryostat that contains the LAr and the HPGe detectors is submerged in a large water 
tank that serves as an additional active shield. GERDA is deploying their germanium detectors in a phased approach and 
recently completed its first phase at LNGS [32,61] . During this phase they deployed reprocessed enriched detectors from the 
previous International GErmanium EXperiment (IGEX) [62,63] and Heidelberg-Moscow (HDM) experiment [64] , as well as 
new detectors from their second phase. GERDA started data-taking in 2011, collected 21.6 kg.yr of exposure, and success- 
fully demonstrated the operation of an array of HPGe detectors submerged in LAr. They also set the best current limit of 
ββ(0 ν)-decay in 76 Ge of T 1 

2 > 2 . 1 × 10 25 y , which they combined with previous experiments to yield T 1 
2 > 3 . 0 × 10 25 y . In 

addition to careful materials selection, GERDA relied on digital pulse-shape analysis of HPGe signals to distinguish between 
multi-site events, such as Compton scatters, and single-site events that could indicate ββ(0 ν)-decay. GERDA is currently 
deploying their second phase of detectors which will add an additional 20 kg and hope to increase their half-life sensitivity 
beyond 10 26 years [65] . 

The Majorana Demonstrator also uses enriched HPGe detectors that are deployed inside a more conventional low- 
background passive lead and copper shield with an active muon veto [66] . It is currently being deployed and undergoing 
commissioning at the Sanford Underground Research Facility in Lead, SD, USA. Copper is used extensively in the Majorana 
Demonstrator as both construction and inner shielding material. Copper parts located closest to the detectors is made from 
copper that is electroformed and machined underground at SURF to prevent cosmic-ray production of 60 Co. The collabora- 
tion intends to deploy 29 kg of enriched detectors and 15 kg of unenriched with a goal of demonstrating a background of 
3 counts/ROI/t/y after analysis cuts. Because the Majorana Demonstrator does not have the low-energy 39 Ar backgrounds 
from LAr like GERDA, it is also capable of searching for low-energy rare events [67] , such a light-WIMP dark matter [68–72] 
and solar and cosmological axions [70,73–87] . 

The Majorana Demonstrator and GERDA collaborations intend to merge and pursue a joint tonne-scale ββ(0 ν)-decay 
experiment that combines the best technology from both collaborations. 
3.5. Other isotopes and approaches 

48 Ca has the highest Q value of ββ(0 ν)-decaying isotopes, which makes it experimentally very attractive as a candidate 
isotope [31] . However, it’s natural abundance is very low (0.187%), hence the success of any future experiment will depend 
on new enrichment techniques. The CANDLES experiment is using scintillating CaF 2 crystals submerged in liquid scintillator 
and has deployed only 0.3 kg of 48 Ca, which limits its sensitivity. 

Additional effort s with different isotopes are underway that use thin foils in a gaseous tracking detector (NEMO-3 [88] 
and SuperNEMO [89] ), scintillating bolometers (CUPID [90] , LUCIFER [91] , AMoRE [92] ) and solid TPCs (COBRA) [93,94] . The 
reader is referred to other review articles that cover these techniques in more detail [16,28,29,95] . 
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Fig. 1. Shown are the 3 σ discovery limits of a germanium experiment as a function of exposure and background limits achieved. The horizontal band 
shows the inverted neutrino mass hierarchy region, including the uncertainties associated with NMEs and neutrino mixing parameters. It is clear that to 
completely probe in the inverted neutrino mass hierarchy, the experiment must have extremely low backgrounds of 0.1 cts/t/y, even with 10 t.y of exposure. 
Other isotopes have similar background requirements. 
4. Main considerations for the next generation experiments 

The major ββ(0 ν)-decay experiments are moving towards building tonne-scale experiments to improve sensitivity. These 
experiments will be expensive and not all approaches will be able to move forward. Selecting the best technology and 
isotope(s) will be a formidable challenge that needs to consider NME calculations, Q -values of isotopes, backgrounds in the 
ROI, energy resolution, enrichment, and cost. Several authors have studied this issue, ie. [20,27,95] , and this complicated 
topic is beyond the scope of this brief review. However, an important and sometimes overlooked fact is that the background 
requirement is just as important as the increased mass, as they occur in a reciprocal relationship in sensitivity estimates. 
This is shown in Fig. 1 . Any increase in isotopic mass must be accompanied by a commensurate reduction in backgrounds. 
5. Conclusions 

This paper briefly reviewed the current status and future plans of experimental searches for ββ(0 ν)-decay. We showed 
that this is a broad field with a rich array of experimental techniques that is poised to move the next generation of tonne- 
scale experiments. We argue that reducing detector backgrounds is just as important as mass for the reach of a future 
experiments and commensurate efforts should be placed to improve both. 
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