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Abstract For the estimation of the
limits of detection, identification
and determination, considerations
from analytical practice were ap-
plied to the statistics of the calibra-
tion line and its prediction interval.
The detection limit was the con-
centration calculated from the
maximum height of the prediction
interval at zero spiking concentra-
tion. The identification limit was
twice the detection limit and was
the lowest concentration that could
safely be detected. The determina-
tion limit was the lowest concentra-
tion fulfilling three criteria: 1.
None of the signals resulting from
determination limit concentration

should interfere with any signal
from detection limit concentration,
thus providing an unambiguous
separation between the two limits.
2. Recovery should be between
70% and 120%. 3. Lowest and
highest predictable signal at deter-
mination limit concentration
should not deviate more than B
30% from the average. Practical
analytical guidance and the neces-
sary mathematical formulae are
presented.
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Introduction

Daily practice in a residue laboratory often makes ana-
lysts deal with concentration levels that are close to the
bottom end of their clean-up procedures’ and instru-
ments’ capacities. When analysing a sample in this low
concentration range, the results will show a considera-
ble variation. Controlling this variation and producing
reliable results is one of the most challenging tasks for
practitioners, for instance when “zero tolerance values”
have effectively to be controlled (for an example, see
[1]) or when the residue level of a food produce is deci-
sive for its placing on the market [2].

The region of low concentration levels is governed
by the “limit of detection” and “limit of determina-

tion”. These expressions are well known and widely
used and applied in daily routine, but there is no unan-
imous agreement on the best way to establish them. For
instance, solutions of the pure substance in question
may simply be injected into the gas chromatograph,
and from the peak heights observed the limits may be
estimated using practical experience. Other approaches
require spiking experiments to be carried out, in order
to imitate the usual sample clean-up, and their results
are processed in quite complex mathematical-statistical
calculations.

Different working procedures or mathematical-sta-
tistical approaches may however lead to limits of detec-
tion and determination that diverge by more than is
reasonably acceptable, namely by up to a factor of 100
in different laboratories [3]. On the other hand, two re-
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cognised concepts [4, 5] have been evaluated in a type
of ring test, and standardisation recommendations have
been given [6] which made the numerical values for the
limits converge.

Yet these two concepts [4, 5] have certain draw-
backs, some of them severe [7], which may hinder their
acceptance by experienced practitioners. The approach
presented here therefore combines the useful parts of
these concepts, including the “identification limit”,
which cannot be left out of the discussion. In order to
come closer to analytical practice and thus provide
most realistic values for the limits, several new ele-
ments are added.

In this way, this approach is intended to provide
convincing evidence that the usual laboratory habits in
the area of very low concentrations may easily be
placed on a sound mathematical-statistical basis. This
should allow for more reliable results in everyday ana-
lytical practice.

Detection limit: analytical practice and statistical

implementation

The experienced practitioner in residue analysis is ac-
customed to the signals, e.g., the peaks in a gas chroma-
togram, that come up in the analysis of a blank materi-
al. By definition, this material does not contain a resi-
due, and the signal detected at the place where a com-
pound of interest would normally occur stems from
coextractives or other substances that could not be sep-
arated completely during clean-up.

From experience with a large number of blank ana-
lyses, the practitioner knows that the height of this sig-

nal may vary considerably, but that it would not go
beyond a certain maximum height. He estimates this
maximum height from the many chromatograms he has
seen, and he includes in his estimate a “reserve” on top
of the peak heights oberved, since he wants to be sure
that no blank peak at any time in the future goes
beyond that estimate. Should a signal now extend
beyond this maximum height, a residue must be pres-
ent. Thus the maximum height of the blank signal is the
decisive criterion of whether a residue has been de-
tected or not. To convert the maximum height into a
concentration value, a calibration line is employed. The
concentration value thus calculated is called “detection
limit” (DTC).

In order to draw up the calibration line, several
batches of blank material are spiked with increasing
concentrations of the compound in question. Spiking
should start at the concentration level of a provisionally
estimated DTC and should go up to about ten times
this level. Each spiking sample is taken through the
whole analytical procedure. The signals obtained, e.g.,
their heights, are then mapped onto a 2-dimensional di-
agram in the direction of the y axis, whereas the corre-
sponding spiking concentrations are noted on the x
axis. A subsequent regression calculation provides the
calibration line or, more precisely, the “calibration line
of the complete analytical procedure”.

For the mathematical-statistical implementation of
this approach, the calibration line and its prediction in-
tervals are considered (Fig. 1). The edges of the predic-
tion intervals above and below the calibration line de-
termine the maximum and minimum heights of a future
signal at a selected concentration. Hence the upper pre-
diction interval margin at zero concentration represents

Fig. 1 Calibration line (y p a
c bx) with prediction inter-
vals (yc, y–) and graphical
deduction of DTC. The arrow
on the y axis reflects the maxi-
mum future signal height from
a blank material
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Fig. 2 Variability of analytical
results at DTC concentration.
The Gaussian distributions
represent the abundance of
the signals (y axis) and of the
concentrations (x axis), re-
spectively

the maximum peak height that may be encountered
from the analysis of a blank material (ycrit in Fig. 1).
Transforming this signal height via the calibration line
into a concentration provides DTC. In this way analyti-
cal practice is sufficiently well reflected, and this ap-
proach was taken as the basis of DIN 32645 [4].

In order to cover virtually every future peak from a blank ma-
terial we calculate the upper prediction interval for a probability
of 95% which is usually sufficient for analytical purposes [5].
Since only the maximum peak height is of interest, but not the
maximum and minimum at the same time, we have a 1-sided sta-
tistical consideration. Consequently, the prediction interval is
computed for 95%, for a 1-sided consideration and for a single
future analysis.

The prediction intervals at both sides of the calibration line
are limited by hyperbolic functions. In a “good” calibration these
hyperbolae appear as straight lines parallel to the calibration line
itself. This is also the case in the figures presented here, but it
does not influence the mathematical-statistical considerations.

In analytical practice the lower prediction interval limit may
well go to a negative signal value at zero spiking concentration.
This corresponds to negative signals from the analysis of a blank
material, which is very rare however. Thus we see here the limita-
tions of the linear regression line model for the lower end of the
calibration function, where signals are rather determined by coex-
tractives than by the substance traces the analytical procedure in-
tends to detect.

Analysis of a residue actually present: identification

limit

When a residue is indeed present in a material, re-
peated analyses will result in a range of different con-
centration values because of the scatter of analytical re-
sults. The concentrations found will be above and be-
low the actual residue concentration and will give a
Gaussian distribution when a large number of analyses

are carried out. Hence, with a residue concentration of
DTC, analytical results will scatter around DTC. After
a sufficiently large number of analyses, the distribution
will show that 50% of the results are above DTC and
50% below. Thus, in 50% of the cases the residue will
be declared “detected”, whereas in the remaining 50%
a “not detected” is reported (Fig. 2).

In daily laboratory routine, often large numbers of
samples have to be inspected, and this allows only a sin-
gle analysis to be performed on each sample. Conse-
quently, when a sample contains an actual residue con-
centration of DTC, the analyst has only a 50% chance
of detecting the residue. The probability of not detect-
ing the residue is equally 50%, but this is an error. This
false-negative error is called a 2nd order error or beta-
error, and the probability for it is 50%.

The 50% error at DTC concentration has led to quite a few
concepts (and to many more hours of heated discussions) that fix
DTC at a higher concentration level than described here, in order
to reduce the 2nd order error to an acceptable value of, say, 5%.
The practitioner will however continue to employ DTC in the
way he is used to, namely by saying that below DTC any residue
is “not detected”, whereas above DTC a residue is “detected”.
This is always a 50% 2nd order error for any DTC concentration
level, no matter how high DTC is. Therefore setting DTC at a
higher concentration level leads to contradictions in the statistical
argumentation [7].

When an actual residue concentration is higher than
DTC, the results from repeated analyses will scatter
around this higher concentration, and fewer than 50%
will fall below DTC. Therefore a single analysis has a
higher chance than 50% of detecting the residue. When
the concentration is sufficiently high, virtually all single
analyses (e.g., 95% of them) will show that a residue is
“detected”, because virtually none of the analytical re-
sults lies below DTC. This concentration is the identifi-
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Fig. 3 Variability of analytical
results at ID concentration.
The Gaussian distributions
represent the abundance of
the signals (y axis) and of the
concentrations (x axis), re-
spectively

cation limit (ID). With the usual statistical assumptions,
it is twice as high as DTC (Fig. 3) [4].

In practice this means that a horizontal line is drawn from the
point where the upper prediction interval limit cuts the y axis to
the right until it reaches the lower prediction interval limit, which
is equally computed for 95% probability, for a 1-sided considera-
tion and for a single future analysis. Going down to the x axis
provides ID.

Both prediction interval limits have the same vertical distance
from the calibration line at a given concentration. This can easily
be recognized from the formulae [8]. Calculating ID as being
2 ! DTC requires that they also be symmetrical in the horizontal
direction. However, this did not seem to be the case with the com-
puter programme which we had written in the course of this work
[9] and which performed all calculations with a remarkable accu-
racy of 18 digits. In general, the lower prediction interval, when
calculated via the height formula ( p vertical height), was situ-
ated up to 2% of 2 ! DTC to the left of 2 ! DTC. Plotting the
upper and lower prediction interval limits using either the formu-
lae for the (vertical) height or for the (horizontal) width [8] gave
two different lines for each limit. Therefore ID should be be-
tween 0% and 2% to the left of 2 ! DTC. This minor difference
can be taken account of by the computer programme employed.
For the practitioner, an ID of 2 ! DTC will probably be suffi-
cient in most cases.

On the other hand, when going down from DTC to
lower concentrations, the chance that a single analysis
may detect an actual residue is always lower than 50%,
because less than 50% of the results of repeated ana-
lyses would lie above DTC. This probability decreases
with decreasing residue concentration; but also an ac-
tual residue below DTC can be detected with a single
analysis.

Determination limit: analytical practice and statistical

implementation

In the low concentration range, the variability of analy-
tical signals is relatively high. This is due to the possible
presence of coextractives or other components that are
not separated during clean-up. With increasing concen-
tration and, consequently, signal height, the relative
scatter decreases and the results of analyses are increas-
ingly precise. Thus, from a certain limit upwards, the
result of an analysis may be reported as a reliable num-
ber. This limit is called “determination limit” (DTM).

Criterion 1: Sufficient distance between determination
limit and detection limit

In analytical practice, a signal should be about three
times as high as the largest possible signal from a blank
analysis before a trustworthy figure may be given. Ex-
perience tells us that from this high point upwards the
influence of coextractives on a signal is sufficiently
small to allow for reporting a precise number. In this
sense the region of high relative variability is below
DTM concentration, in particular around DTC, and the
region of low relative variability is at DTM concentra-
tion and above. Hence DTC and DTM must be suffi-
ciently separated from each other. Since this is the first
criterion that must be satisfied by DTM, the value re-
sulting from this condition will be called DTM1.

If we take this into consideration in the statistical
model, it means that the Gaussian curves produced by
the concentrations DTC and DTM virtually do not
overlap. Therefore, a horizontal line has to be drawn
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Fig. 4 Variability of analytical
results at DTM1 concentra-
tion. The Gaussian distribu-
tions represent the abundance
of the signals (y axis) and of
the concentrations (x axis), re-
spectively

from ycrit to the right towards higher concentrations
(Fig. 4). The intersection of this line with the edge of
the lower prediction interval is the upper end of DTC’s
Gaussian. At the same time this will be the lower edge
of DTM’s Gaussian. Hence a vertical line has to be
drawn up to the borderline of the upper prediction in-
terval. Going from this new point of intersection to the
right until the lower prediction interval is reached gives
the width of DTM’s Gaussian. DTM itself is found
when dropping down onto the x axis at the point where
this horizontal line cuts the calibration line (Fig. 4). In
this way, DTM1 only provides signals which are always
larger than any signal from DTC concentration. Thus
one can indeed say that DTC and DTM1 are sufficient-
ly well apart from each other.

When taking the 1-sided prediction interval of 95% probabili-
ty, the Gaussian curves of DTM1 and DTC overlap by only 5%
each (Fig. 4). It seems plausible to apply the 1-sided interval also
here, since for DTM1 only the variability of signals down to lower
concentrations is of interest, whereas for DTC only the scatter
upwards is considered.

Criterion 2: Complete recovery at determination limit
and above

The second criterion for DTM is that recovery should
be complete from this concentration level upwards [5].
In practical terms this means that recovery should
neither be too low, nor should it go far beyond 100%
(second criterion for DTM, giving DTM2). For residue
analyses a widely accepted minimum is 70% [5], and
120% should be the upper mark for a “complete” re-
covery.

In order to check this criterion, the calibration line
of the so-called “basic analytical procedure” has to be
drawn up. Standard solutions containing only the com-
pound of interest in a suitable solvent are injected into
the analytical measurement system, thus providing sig-
nal heights resulting from the pure compound. The
standards should have the same concentrations as the
injected solutions from the “complete analytical proce-
dure” when assuming a 100% recovery. From the sig-
nals obtained, the calibration line of the basic analytical
procedure is calculated by linear regression.

Since the standards only contain the pure compound but no
coextractives, signal variability should be rather small, much
smaller than from the spiking assays. Hence it may be sufficient to
inject just a few standards that cover the whole calibration con-
centration range. The minimum number for this is certainly 3,
since this is necessary to compute a regression line in order to
take account of the analytical variability. Taking 2 data points or
even 1 point plus the origin of the coordinate system would be
less adequate.

The calibration line of the basic analytical procedure
serves to convert the signals from the spiking assays
into the corresponding recovered concentrations. In a
further diagram the recovered concentrations are then
plotted (on the y axis) against the spiking concentra-
tions (on the x axis). By a subsequent regression, the
“recovery function” is obtained (Fig. 5).

The ideal recovery function is a straight line that
starts at the origin of the coordinate system and has a
slope of 1, which means a recovery of 100% (Fig. 5, line
1). With just 70% recovery the slope is only 0.7, and
with 120% it is 1.2. Any recovery line through the ori-
gin and within the funnel limited by these two extreme
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Fig. 5 “Recovery funnel”. 1.
Ideal recovery function. 2. Re-
covery function with a positive
intercept. 3. Recovery func-
tion with a negative intercept

recovery lines represents a recovery between 70% and
120%. Thus it satisfies the DTM2 criterion.

Should a recovery function have a positive intercept
(Fig. 5, line 2), its slope must be below 1.2 in order to
penetrate into the “recovery funnel”. However, it must
not be smaller than 0.7 because it should remain within
this area. At the entrance point into the funnel a verti-
cal line onto the x axis marks the concentration of
DTM2 (Fig. 5).

In the case of a negative intercept (Fig. 5, line 3), the
slope of the line must be steeper than 0.7 to reach the
funnel area, but not larger than 1.2 as it must remain
within it. This time the point of intersection with the
lower edge of the funnel gives DTM2 on the x axis.

Even if a recovery line with a positive/negative intercept re-
mains within the funnel, the recovery itself decreases/increases
when going to higher concentrations. Should the recovery func-
tion not reach the funnel area within the calibration range, no
DTM can be given, strictly speaking. However when a DTM must
be reported, it should be accompanied by the actual recovery en-
countered at DTM concentration.

Criterion 3: Limited variability at determination limit
and above

The third criterion for DTM is that variability should
be sufficiently low at this concentration level (and
above). In residue analysis the widely recognised quan-
titative criterion is a variation coefficient of B0.2 or
B20% [5]. The variation coefficient is the standard de-
viation divided by the mean, and it describes the scatter
of about 68% of the events that were measured in the
past, provided that these events followed a Gaussian
(p normal) distribution [10]. If we want to cover 68%

of the signals that scatter around the calibration line,
we draw two parallel lines above and below the calibra-
tion line itself at a distance of B one residual standard
deviation [11]. This band with a height of “B residual
standard deviation” corresponds to the usual B stand-
ard deviation around the mean. Dividing the (vertical)
height of this band by the y value of the calibration line
at a determined concentration gives the “relative resid-
ual standard deviation”.

A more illustrative representation of the signal scat-
ter around the calibration line is the prediction interval,
e.g., the 2-sided prediction interval for a probability of
95%, which includes virtually all signals (more precise-
ly: 95% of all signals) above and below the calibration
line that may ever come up in the future. Dividing the
(vertical) height of the band by the y value of the cali-
bration line at a determined concentration gives the
“relative prediction interval height” (Hrel.).

If we now try to establish a maximum variability cri-
terion for DTM using the prediction interval height, we
have to consider that this interval is based on the t dis-
tribution, which is wider than the normal distribution,
and that it aims at future events, which enlarges varia-
bility even further. Therefore we have to go sufficiently
beyond the B20% criterion for the variation coeffi-
cient.

Inspections of more than 40 calibration lines of orga-
nochlorine compounds, sulfonamides, substances with
hormonal action and heavy metals analysed by GC,
HPLC, ELISA, RIA or atomic absorption showed that
the concentrations where the relative residual standard
deviation was B20% provided a relative prediction in-
terval height of B47% to B53% (Table 1). Thus, a re-
lative prediction interval height of some B50% would
be about equivalent to the B20% variation coefficient
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Table 1 Relative prediction interval heights corresponding to a
B20% variation coefficient, and relative residual standard devia-
tion corresponding to a B30% relative prediction interval
height

Substance classa Relative prediction
interval height, in
B% corresponding
to a B20% varia-
tion coefficient

Relative residual
standard deviation,
in B% corre-
sponding to a
B30% relative
prediction interval

Organochlorine
compounds

47–48 12–13

Sulfonamides 48–49 12–13
Substances with
hormonal action

47–52 12–13

Heavy metals 49–51 12–13

a For details on compounds in each substance class see Table 3

Fig. 6 Variability of analytical
signals at DTM3 concentra-
tion. Hrel. p relative predic-
tion interval height

criterion. Yet B50% appeared to be too much for the
DTM criterion that should assure a “limited” variabili-
ty.

On the other hand, concentrations at a B30% rela-
tive prediction interval height gave a relative residual
standard deviation of B12% to B13% (Table 1). This
was more conservative than the usual B20% variation
coefficient, but it seemed to be preferable from a prac-
tical point of view: A B30% relative prediction interval
height means that with a DTM peak of 3 cm in a chro-
matogram of 15 cm height, peaks from the analysis of a
DTM material could scatter by about 1 cm at most, i.e.,
from 2 cm to 4 cm. This seems to be quite a lot, but, as
explained before, it takes account of 95% of all peaks
that may ever come up in a future analysis, and in addi-
tion it is more conservative than the usual B20% varia-
tion coefficient.

The third criterion for DTM is thus that the relative
vertical height of the 2-sided 95% prediction interval is
B30% at DTM concentration (Fig. 6). The resulting
concentration will be called DTM3.

Final decision

Finally, the three provisional concentration values for
DTM, namely DTM1, DTM2 and DTM3 are compared
with each other (similar to [5]). The highest value is
DTM, since it satisfies all three criteria.

Reporting analytical results

As a rule, the mathematical formulae for DTC, ID and
DTM are designed for application to single analytical
results only [4, 5], but not for instance to averages. This
is quite well adapted to laboratory practice where large
numbers of samples and limited resources in personnel
and time often only allow a single analysis of each sam-
ple. In reporting analytical results in the concentration
range of DTC, ID and DTM, the practitioner will not
want to give the single result that he has found. He
knows that variability is considerable around this con-
centration level, and consequently he may have found a
result, e.g., above DTC, whereas the actual concentra-
tion in the sample is below. Therefore he has to formu-
late his finding accordingly (Table 2) [4].

Should the result be below DTC, a “not detected”
should be reported. An actual concentration that may
nevertheless be present will not be higher than ID,
since ID is the lowest concentration that will virtually
always be found. Therefore, in addition to the “not de-
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Table 2 Reporting analytical
results Result x Report Additional information

x~DTC Not detected Maximum limit ~ID1
DTC^x~DTM Detected, not determinable Determination limit ~DTM1
x6DTM Concentration Horizontal prediction interval width

Table 3 Parameters of the recovery function (xfnd, fort

pareccbrec xfort) and DTCC98, IDC98 and DTMC98, calculated
from the fortification experiments by applying the concept pres-

ented here. Results for pesticides and substances with hormonal
action are given in ng/kg, those for sulfonamides and heavy me-
tals in mg/kg

Substance brec

[%]
arec Corr.

coeff.a
DTCC98 IDC98 DTM1 DTM2 DTM3 DTMC98

DDE, pp 87.1 6 0.9949 30 61 90 18 110 110
HCB 85.9 P12 0.9944 32 63 94 77 136 136
HCH, a 83.7 P 3 0.9950 30 60 89 20 119 119
PCB 101 80.3 P 7 0.9925 37 73 108 64 149 149

Dexamethasone 108.0 128 0.9901 108 215 317 1063 293 1063
Diethyl-
stilboestrol 119.9 P36 0.9960 34 68 101 71 160 160
Progesterone 85.1 76 0.9946 84 168 248 217 236 248
Salbutamol 83.3 308 0.9958 344 685 1015 839 967 1015

Sulfadimidine 97.2 P 9 0.9985 17 33 50 33 75 75
Sulfadoxine 83.3 4 0.9992 12 25 37 11 44 44
Sulfapyridine 90.0 P 5 0.9982 18 36 53 23 76 76
Sulfisoxazol 77.0 5 0.9984 18 35 52 13 62 62

Arsene 99.9 P 8 0.9990 5.2 10 16 28 29 29
Cadmium 118.0 P 2 0.9983 2.0 4.0 6.0 3.7 9.4 9.4
Mercury 104.9 11 0.9991 9.2 18 27 75 26 75
Selenium 97.7 P 2 0.9979 37 74 110 9.4 147 147

a correlation coefficient

tected”, the “maximum limit [numerical ID value]” or
“~ [numerical ID value]” should be given. Reporting
the numerical value of DTC, as is often done in analy-
tical practice, provides less valuable information.

When the analysed compound is considered an “impurity”, a
“not detected” guarantees that the concentration is not above ID.
In this sense ID is the “limit of guarantee of purity”, an expres-
sion that was introduced in a very early concept on DTC and ID
[12].

When the single analytical result lies between DTC
and DTM it should be reported as “detected”, adding
eventually that it was “not determinable, determination
limit [numerical value of DTM]”. Since variability is
still considerable in this concentration range, the actual
concentration may even be slightly above DTM, but
the numerical DTM value shows in which concentra-
tion area the result was obtained.

With an analytical result above DTM, the numerical
value of the result should be reported. Even if the ac-
tual concentration may be slightly below DTM the var-
iability is quite similar. Thus, the numerical value is suf-
ficiently reliable. Further to the numerical value, the
horizontal width of the 2-sided prediction interval at
this concentration may be reported.

Application to analytical practice

Fortification experiments and computations

In order to illustrate the approach to DTC, ID and
DTM described here, selected organochlorine com-
pounds, sulfonamides, substances with hormonal action
and heavy metals were added to blank samples of mus-
cle, serum and urine samples. The spiking concentra-
tions started at the level of the DTCs estimated from
previous experience and raised to 8 or 10 times this lev-
el. Within this range, 3 fortification experiments were
repeated at each of 4 evenly distributed, distinct con-
centration levels, thus giving 12 fortifications for each
compound [7]. Details of sample clean-up and instru-
mental determination were described earlier [14, 15].

Regression lines and DTC, ID and DTM (Table 3)
were calculated with a self-made computer programme
[9], but may also be obtained from the formulae given
below. It may be interesting to know that DTC, ID and
DTM may as well be calculated from the recovery func-
tion of a substance.
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Fig. 7 Relative mean values
of DTC, ID and DTM from
different approaches, calcu-
lated from the fortification ex-
periments, with DTC98 set to
1.00

Table 4 DTC, ID and DTM from other statistical approaches
than that presented here, calculated from the fortication experi-
ments (3SD from [12], 10SD from [13], DFG from [5], DIN from

[4]). Results for pesticides and substances with hormonal action
are given in ng/kg, those for sulfonamides and heavy metals in
mg/kg

Substance DTC3SD DTM10SD DTCDFG DTMDFG DTCDIN IDDIN DTMDIN

DDE, pp 25 57 73 109 46 92 149
HCB 12 29 76 134 48 97 155
HCH, a 21 44 72 107 46 91 147
PCB 101 46 103 88 147 56 112 180

Dexamethasone 87 198 257 381 164 329 515
Diethyl-
stilboestrol 72 172 82 158 52 104 166
Progesterone 75 159 202 300 129 259 411
Salbutamol 83 202 828 1232 529 1059 1684

Sulfadimidine 17 47 41 74 26 52 84
Sulfadoxine 7.2 20 30 45 19 38 62
Sulfapyridine 20 58 44 75 28 55 90
Sulfisoxazol 28 67 42 63 27 53 87

Arsene 0.3 0.8 13 19 8.0 16 26
Cadmium 0.5 1.5 4.9 7.3 3.1 6.2 10.1
Mercury 3.2 9 22 33 14 28 46
Selenium 18 48 89 133 56 113 183

A comparison with other approaches

In current analytical literature, DTC and DTM are oft-
en calculated from the blank average signal by adding a
multiple of the blank signal variation. The basis for do-
ing so can be found in a quite early concept [12] which
calculated DTC from the “average blank signal c 3
standard deviations of the blank signal”. In accordance
with this, DTM was elsewhere computed from the “av-
erage blank signal c 10 standard deviations of the
blank signal” [13]. In either case, however, the ob-
served signal value (y axis) had to be mirrored at the
calibration line of the complete analytical procedure in

order to give DTC and DTM (on the x axis), respec-
tively. In the following comparison we index the result-
ing DTCs with “3SD” and the DTMs with “10SD” (Ta-
ble 4).

The results from a further approach, especially de-
signed for residue analysis [5], will be marked “DFG”
(Table 4), and an approach for chemical analysis in
general [4] will be designated “DIN” (Table 4). As
mentioned above, these two approaches served as the
basis for the concept presented here. Finally the results
computed from the present approach are labelled
“C98” for “Concept ’98” (Table 3).
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When taking DTCC98 as the basis for comparison,
DTCDIN values were about 1.5 times higher (Fig. 7); the
reason for this was that C98 employs the 95% predic-
tion interval, whereas DIN requires 99%. DTCDFG val-
ues were some 2.4 times above DTCC98, because DFG
has a different argumentation for deducing DTC (but
see also [7]). DTC3SD proved to be slightly lower than
DTCC98.

Comparing the ID showed that IDDIN values were
1.5 times higher than IDC98 (Fig. 7); this again reflected
the higher probability DIN uses for the prediction in-
terval.

The calculated DTMC98 most often resulted from
DTM3 (Table 3), i.e., the criterion for a limited varia-
bility was most often decisive. In comparison with
DTMC98 the DTM10SD values were only 0.39 times as
high (Fig. 7). DTMDFG values also were below
DTMC98, namely by a factor of 0.81, DTMDIN values
were somewhat above.

As explained above, during the deduction of DTM,
the laboratory practitioner expects a sufficient distance
between DTC and DTM. From experience a factor of
about 3 would be the least to request.

The DTMC98 values calculated from the fortification
experiments were about a factor of 4.7 higher than the
DTCC98 (Fig. 7); this was somewhat more than what an
analyst would look for, but reflects the “safety net” the
three criteria for DTMC98 offer. In contrast to this,
DTC3SD and DTM10SD only differed by a factor of 2.4,
and between DTCDFG and DTMDFG there was only a
factor of 1.6, which indeed proved to be too little.
DTCDIN and DTMDIN provided a difference by a factor
of 3.2.

Performance characteristics of the analytical
procedure employed

When establishing DTC, ID and DTM as described
here, the computations also provide a number of data
that reflect the performance of the analytical procedure
employed. These data include the slope of the calibra-
tion line (sensitivity of the procedure), the intercept
(influence of coextractives), correlation coefficient
(link of concentrations and signals), residual standard
deviation (variability of signals around the regression
line), standard deviation of the procedure (p residual
standard deviation divided by the slope; reflects the
procedure’s absolute precision) and variation coeffi-
cient of the procedure (p standard deviation of the
procedure divided by the mean of spiking concentra-
tions; for comparison amongst different laboratories).

Taking advantage of modern instruments’ capabilities

It is of the utmost importance that the obtained signal
is converted into the analytical result via the calibration
line of the complete analytical procedure. Only this cal-
ibration line sets the finding at the right place on the
concentration axis (p x axis).

Modern analytical instruments in AAS, GC and GC-
MS, HPLC, ELISA or RIA may offer the possibility to
establish a calibration line by injecting several calibra-
tion solutions in the course of a series of samples.
These calibration solutions should originate from spik-
ing concentrations analysed in parallel with the sam-
ples, thus enabling the instrument to calculate the cali-
bration line of the complete analytical procedure and,
subsequently, the sample concentrations.

When the calibration solutions just contain the pure
compound, only the basic analytical procedure is cali-
brated. This gives results that do not take account of
the recovery, which may be extremely low, e.g., around
40% for polar pesticides in water, or which appear to
be extremely high, e.g., about 180% for corticosteroids
in urine. In the latter case, the measured signals would
lead to much too high results and thus render concen-
trations “detectable” which indeed are not. The un-
pleasant fact is that recovery of such analytical proce-
dures should be brought closer to 100%, even if this
may be difficult for the practitioner working under un-
favourable conditions.

Consequently, when calibrating only the basic analy-
tical procedure in daily analyses, the resulting concen-
trations found by the instrument should be plotted onto
the y axis of the recovery function and then be con-
verted into actual concentrations on the x axis. In this
way, the recovery established in the spiking assays is
taken into account. The better way however is to al-
ways calibrate the complete analytical procedure.

Mathematical formulae

Calibration line of the complete analytical procedure

ypacbx

with: ypsignal value at concentration x
xpa substance’s concentration in a sample
apy intercept
bpslope

Slope b of the calibration line

bp

n

A
ip1

yi xiP
1
n

n

A
ip1

xi

n

A
ip1
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n

A
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2P

1
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n

A
ip1
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with: xipfortification concentration of sample i
yipsignal value of samplei
nptotal number of calibration analyses
ipindex of calibration analyses

Intercept a of the calibration line with the y axis

ap
1
n

n

A
ip1

yiP
b
n

n

A
ip1

xi

A minor drawback of the linear regression calculation is that
it requires constant variability over the entire calibration range.
But it is well known from analytical experience that variability
increases along with concentration [16]. This can already be ob-
served when the lowest and highest concentration of the calibra-
tion differ by a factor of 10 as suggested in general in the concepts
for DTC, ID and DTM. Nevertheless a weighted regression that
takes account of the variability increase does not necessarily pro-
vide the significant changes in DTC, ID and DTM [17] that may
be expected (e.g. [18]).

Residual standard deviation sy

syp"
n

A
ip1

(yiP(acbxi))2

nP2

Critical signal height ycrit

ycritpacsy tf;a"1c
1
n
c

x̄2

n

A
ip1

(xPx̄)2

with: tf;apquantil of t distribution (single-sided) for fpn–2 de-
grees of freedom and a probability of 95% (error probabili-
ty a p 0,05)
x̄pmean value of the fortification concentrations of all cali-
bration analyses

Detection limit DTC

DTCp
(ycritPa)

b
p

sy

b
tf;a"1c

1
n
c

x̄2

n

A
ip1

(xiPx̄)2

Identification limit ID

To calculate ID, we saw that the horizontal line has to cut the
lower prediction interval at the height of ycrit:

ycritpsy tf;a"1c
1
n
c

(IDPx̄2

n

A
ip1

(xiPx̄)2

or

ycritPsy tf;a"1c
1
n
c

(IDPx̄2

n

A
ip1

(xiPx̄)2

p0

Since it would be rather complicated to derive a formula for
ID from this expression (in the form if IDp.....), the computer
programme we wrote during this work [9] approximated ID as
being equal to 2!DTC and calculated the above expression.
Where the result was not zero, the programme diminished ID by
0.1% and calculated the expression again. with this iteration pro-
cedure it approached the ID value that would make the above
expression equal to zero. To keep the necessary time short we
stopped the iteration when the expression was smaller than 0.01.
This resulted in ID values that were up to 2% smaller than
2!DTC. Since this difference is quite small for the practitioner’s
purpose, we set:

IDp2!DTC

Determination limit DTM

Calculation of DTM1

The lower edge of the Gaussian distribution around
DTM1 is ID (Fig. 4). Using the formula for the
branches yB of the single–sided prediction interval:

yBpȳcb (xPx̄)Bsy tf;a"1c
1
n
c

(xPx̄)2

n

A
ip1

(xiPx̄)2

we obtain yDTM1 by replacing x by ID:

yDTM1pȳcb (IDPx̄)csy tf;a"1c
1
n
c

(IDPx̄)2

n

A
ip1

(xiPx̄)2

with: tf;apquantil of t distribution (single-sided) for fpn–2 de-
grees of freedom and a probability of 95% (error probabili-
ty ap0,05)
ȳpmean value of the signal values of all calibration ana-
lyses

DTM1p(yDTM1Pa)/b

Calculation of DTM2

Linear regression of the signal and concentration val-
ues obtained from the instrumental analysis of standard
solutions gives the calibration line of the basic analyti-
cal procedure:

ypastdcbstd x

with: xpconcentration of standard solutions
ypsignal values from the analysis of standard solutions
astdpy intercept of the calibration line of the basic analyti-
cal procedure
bstdpslope of the calibration line of the basic analytical pro-
cedure
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Table 5 Calculation of DTM2. arecpy intercept of the recovery
function, brecpslope of the recovery function

Case arec brec Calculation of DTM2

1 0 0.7^brec^1.2 DTM2p0

2 10 0.7^brec~1.2
DTM2p

arec

1.2Pbrec

3 ~0 0.7~brec^1.2
DTM2p

arec

0.7Pbrec

4 10 brec~0.7 DTM cannot be
p0 brec11.2 calculated
~0

With this calibration line, the signal values obtained in
the fortification experiments (yfort) are converted into
“found concentrations” (xfnd, fort):

xfnd, fortp(yfortPastd)/bstd

Linear regression of the xfnd, fort (on the y axis) and the
fortification concentration leads to the recovery func-
tion:

xfnd, fortpareccbrec xfort

with: xfortpfortification concentrations
xfnd, fortpfound fortification concentrations
arecpy intercept of the recovery function
brecpslope of the recovery function

DTM2 is then calculated according to Table 5.

Calculation of DTM3

Auxiliary terms:

Qp
n

A
ip1

(xiPx̄)2; Dp(0.3 b)2P
(sy tf, a)2

Q

DTM3px̄P
b 0.32

D
ȳc

sy tf, a
D "11c

1
n2 Dc

0.32 ȳ2

Q

with: tf; apquantil of t–distribution (double-sided) for fpn–2 de-
grees of freedom and a probability of 95% (error probabili-
ty ap0,05)

Final decision for DTM

The largest numerical value from among DTM1,
DTM2 und DTM3 is selected as DTM.

A comprehensive example

The numerical example in Table 6 enables the inter-
ested reader to inspect the necessary calculations in de-
tail.

Table 6 Comprehensive example: calculation of DTC, ID and DTM

Description Numerical values

Signal values from 3 fortification experiments at each of 4 concentration levels Fortification
concentrations
(mg/kg)

Signal values
(are units)

x1 20 y1 5661
x2 20 y2 6640
x3 20 y3 7639
x4 80 y4 20712
x5 80 y5 21871
x6 80 y6 23163
x7 140 y7 35006
x8 140 y8 36221
x9 140 y9 37358
x10 200 y10 50473
x11 200 y11 51522
x12 200 y12 52729

Number of signal values n 12

Mean of all concentrations x̄ 110.0000
Mean of all signal values ȳ 29082.9160

Further values x̄2 12100
n

A
ip1

(xiPx̄)2 54000

y intercept (a) and slope (b) of the calibration line of the complete analytical proce-
dure

a
b

1754.57
248.44

Residual standard deviation sy 1046.0726
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Table 6 (Continued)

Description Numerical values

Quantil of the t distribution (single-sided) for fpnP2 degree of freedom at a prob-
ability of 95% (ap0.05)

tf,a 1.8125

Critical signal value ycrit 3922.50

Detection limit (mg/kg) DTC 8.7

Identification limit (mg/kg) ID 17.4
(The value found by iteration was: 17.2)

Signal value of DTM1 yDTM1 8202.76

DTM criterion 1 DTM1 25.72

Signal values from the analysis of standard solutions (basic analytical procedure) Concentrations
(mg/kg)

Signal values
(area units)

xstd1 20 ystd1 4628
xstd2 20 ystd2 5514
xstd3 20 ystd3 6462
xstd4 80 ystd4 20643
xstd5 80 ystd5 21542
xstd6 80 ystd6 22542
xstd7 140 ystd7 37478
xstd8 140 ystd8 38347
xstd9 140 ystd9 39309
xstd10 200 ystd10 53462
xstd11 200 ystd11 54311
xstd12 200 ystd12 55234

y intercept (a) and slope (b) of the calibration line of the basic analytical procedure astd

bstd

35.02
272.01

Found concentrations (xfnd, fort) after conversion of the signal values y (complete
analytical procedure) by means of the calibration line of the basic analytical proce-
dure

Fortification
concentrations
(mg/kg)

Found
concentrations
(mg/kg)

xfort1 20 xfnd1 20.68
xfort2 20 xfnd2 24.28
xfort3 20 xfnd3 27.95
xfort4 80 xfnd4 76.02
xfort5 80 xfnd5 80.28
xfort6 80 xfnd6 85.03
xfort7 140 xfnd7 128.57
xfort8 140 xfnd8 133.03
xfort9 140 xfnd9 137.21
xfort10 200 xfnd10 185.43
xfort11 200 xfnd11 189.28
xfort12 200 xfnd12 193.72

y intercept (a) and slope (b) of the recovery function arec

brec

6.32
0.91

Intersection point (x1,2) of the recovery function with the upper edge of the “recov-
ery funnel” (yp1.2 x; case 2 in Table 5)

x1,2 22.05

DTM criterion 2 DTM2 22.05

Quantil of the t distribution (double-sided) for fpnP2 degrees of freedom with a
probability of 95% (ap0.05)

tf,a 2.2281

Auxiliary term Q Q 54000

Auxiliary term D D 5454.42

DTM criterion 3 DTM3 27.34

Determination limit (mg/kg) DTM 27.3
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