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Non-standard-model CP violation in E„3decays
as a method of probing for new physics
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The transverse polarization of the muon (P„) in the decay E+~m p+v„ is a very useful tool for
studying CP violation because a detectable nonzero P„can only arise from physics beyond the standard
model. Further, P„ is interesting because it probes a different region of parameter space than many oth-
er CP-violating observables. To help justify an experimental search, we present three models which give
P„~ 10 ' and which are not contradicted by other experimental data. We also comment on E~~pp
decays.

I. INTRODUCTION

Since its discovery in 1964 [1],many models have been
suggested to explain CP violation in the E -K system.
In the standard model the CP-violating parameter e
arises entirely from a nontrivial phase in the three-family
Cabibbo-Kobayashi-Maskawa (CKM) matrix [2]. But
most physics beyond the standard model can lead to
phases that provide additional sources for CP violation,
often contributing to CP-violating observables in ways
entirely different from the CKM contribution. Observing
such an effect would be a clear signal of physics beyond
the standard mode1 —for example observing a neutron
electric dipole moment (d„) would point to some new
physics beyond the standard model since the CKM phase
only contributes to d„ in third-loop order [3]. However
d„, like e, usually only involves relative phases between
quark-quark couplings, which we term purely hadronic
CP violation, and thus probes much of the same parame-
ter space as e. Further, d„can arise from strong CP
violation, so if d„ is observed to be nonzero at the sensi-
tivity achievable in the next few years, the results cannot
be uniquely interpreted.

Most people who have thought about the standard
model and its foundations expect new physics to arise in
some form to extend the standard model. Almost every
attempt to construct such theories gives physics that in-
troduces new phases into fermion interactions. It would
be surprising if such new phases did not show up in CP-
violating effects. Thus we expect that the CKM phase
will generate much of the CP-violating parameter e, and
that there will be additional CP-violating effects from
other phases.

It has been noted [4] that the transverse polarization of
the muon (P ) in the decay K ~tr p+v„ is an excellent
CP-violating observable to study since P„ is zero in the
standard model (up to CP-conserving electromagnetic
efFects of order 10 ) [5]. Thus, detection of P„WO
would immediately imply physics beyond the standard
model, because no model-independent calculations are re-
quired to separate standard-model and possible new con-
tributions. Further, P„ involves phases between quark-

quark and lepton-lepton couplings (which we term semi-
leptonic CP violation), thus generally probing a diFerent
region of parameter space than d„or e.

The current bound on P is [6]

P„=( —1.85+3.60) X 10

with the error coming mostly from statistics. Experimen-
talists may be interested in searching for an effect or
pushing the bound down in the near future. To justify
such an experiment, one needs to know that at least some
reasonable theories exist which could give P„ large
enough to be seen. The challenge we set for ourselves in
this paper was to come up with models for which
P„—10, and which were not ruled out by other experi-
mental data. %'e exhibit three such models: a three-
Higgs-doublet model employing ratios of vacuum-
expectation values (VEV's) proportional to fermion
masses, a model with a non-Higgs scalar doublet which
couples to fermions, and a scalar leptoquark model.

Following a section outlining the calculation of P„, we
present one section for each of the three models, detailing
the steps to the effective-Lagrangian parameters used to
calculate the P„ for that model, and then discussing pos-
sible constraints from various data. Finally, we summa-
rize and remark on the possibilities of seeing CP violation
in K —+capp decays from model 8 and note that multiple-
Higgs-doublet models (such as model B) are being used in
explanations for the baryon asymmetry of the Universe in
some recent papers.

II. MUON TRANSVERSE POLARIZATION

For the process

K (K)~tr (k)p+(p)v„(q), (2.1)

we want to calculate P„, the polarization of the muon
perpendicular to the decay plane, which we define, as a
function of the two free kinematical variables (over some
finite range),

(2.2)
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This function can be averaged over the kinematical vari-
ables, or the numerator and denominator can be averaged
separately, corresponding to two different experimental
methods for averaging. We define w" to be the polariza-
tion vector of the muon and consider values of
w~=+z"—= (0;pXq/IpXqI), where the superscripts in
(2.2) refer to the muon spin aligned to the +z axis. To
give a contribution to P„, the matrix element must de-
pend on w since otherwise the numerator in (2.2) van-
ishes. Dotting any momentum in the decay plane with w
will clearly give zero, so the polarization must be propor-
tional to

E'~pygl8 E k g (2.3)

The matrix element for (2.1) is just the standard-model
contribution, plus any contributions from new physics.
For us the new physics will arise from scalar exchanges.
At the tree level,

I
Jk

I

=
I

Jb1++ J,

—
haft+

I

=
I
J1t—

I
+

I
A, —

I
+2 Re( JNo&, s)—, ,

(2.4)

&~'Isu IK+ & = f—+
M~ —m„2 2

(2.7)

At this point we note that the scalar piece squared IA, s I

is independent of K" and k~ by (2.7). Also the hadronic
part of the standard-model matrix element squared is just
(2.5) squared, which is symmetric in its indices. Thus
only the cross term of (2.4) will contribute to P„because
neither IAo nor IAs I

can generate a term proportional
to (2.3). One sees immediately that any non-standard-
model effective vector or axial-vector coupling (such as
LR model) will yield P„=O at the tree level, since the ha-
dronic part of the cross term will be just (2.5) squared
again. For an effective scalar coupling, the hadronic part
of the cross term in (2.4) will only have one index which
can be contracted with a leptonic antisymmetric piece
and give a nonzero P„.

Thus we consider scalar Lagrangians which contribute
to P„. The most general such effective scalar Lagrangian
(which does not involve right-handed neutrinos),

where Ato and Jks are the amplitudes for Figs. 1(a) and
l(b), respectively.

The hadronic matrix element for the V-3 part of the
Lagrangian does not depend on the amount of axial-
vector coupling,

L,„L„*,
el' 2 (SRuL )(VLP'R )

M

+ (sL u~ )(vL pz )+H.c. ,
M

(2.8)

&~' sy&(1+y')u IK+ &= &~'Isy&u IK+ &

=f+ (K+k )"+f (K —k )",
(2.5)

since there is no way to form an axial vector from K k~
alone. We also note that f+ and f are relatively real
from CP invariance of the strong interactions, so that the
approximation f /f+ ——0 does not change the CP phys-
1cs.

For the scalar hadronic matrix element, one can use
the Dirac equation to obtain [7]

(K k)„& ~—'I sy "u IK+ &
= (

—m, +m. ) & ~'I»
I

K+ &,

can arise either directly from the Lagrangian for a scalar
of mass M„(where x labels the type of scalar):

—X =L»szuLP» +R»sL utt P» +L»pRvL P» +H. c. ,

(2.9)

or it can also arise from a Fierz transformation, as in a
leptoquark model (e.g., model C).

Remembering that only the cross term contributes to
P„, we use the standard-model weak vertices and (2.5) for
JMo, and the effective Lagrangian (2.8) for JN, s, to obtain

GF . ~ac
2Re(JRoJRs) = —sinOc f+2v2 m,

(2.6)

which then combined with (2.5) using m„«m, and

f /f+ -—0 gives

XRe[(L,„+R,„)L„* 'C—'],
where 'i —' is the trace,

W=[p (p)(K+k) y (1—y )v„(q)]

X [v„(q)(1+y )p —(p)],

(2.10)

(2. 1 1)

FIG. 1. Quark level standard model contribution to
K ~~ p+v„. The arrows indicate particle direction (so this
represents a decaying s antiquark). (b) Quark level contribution
to K+~m p+ v„ from charged scalar P.

1m[(L,„+R,„)*L ]X-
M„

(2.12)

calculated without summing over muon spins (as before
the superscripts refer to the p spin aligned to the +z
axis). The numerator of (2.2) gets nonzero contributions
from the cross term,

Iu+ I' —Iu- I'=2 Re(u,*~s )+ —2 Re(u,*~s )-

M
=4v'2GF sin8c f+(e &~sK k~q~z )

m
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since the spin-dependent terms of T+ and T have op-
posite signs. We take the denominator of (2.2) to be just
the spin-averaged standard-model matrix element,
neglecting the effect of the scalar contribution. Finally
we obtain

different kinematical variables, but our basic results will
not be affected.

m. MODELB

M~
( G~M~ sin8c )

Pl

M~(e p sK p~qrz )
Imp,

where, in the limit off /f+ ——0,

4=2(K p)(K.q) —Mz(p q)

+m„(K.q+ —,'p q),
and where we define

Im[(L,„+R,„)*L„]
Imp =

(M /M~)

(2.13)

(2.14)

(2.15)

A. The Lagrangian

The suggestion that CP violation could be generated
via phases induced in a nontrivial Higgs sector was first
proposed by Lee [9] and then later refined by Weinberg
[10] with the elimination of Aavor-changing neutral
currents (FCNC's) using natural liavor conservation
(NFC). Model 8 uses three Higgs doublets to generate
one nontrivial phase which violates CP in the decay
E+—+m p+v„. As will be explored later, model 8 con-
tains the reasonable assumption that the ratio of the
VEV's is the same as the ratio of the masses which they
generate. This makes the ratio of the VEV's far from
unity, a departure from the assumption of previous au-
thors [5,7]. Following the notation of Cheng [7], we in-
troduce three Higgs doublets, each allowed a complex
VEV.

Note that (2.15) implies that P„ for the K decay has
the opposite sign [8] of P„ for K+ (since ImA *
= —ImA ).

The only kinematic dependence of P in (2.13) lies in
the term in braces. It turns out [7] that for averaging P„,
the simplest choice is to work in the E+ rest frame and
define the angle between the leptons cosO=—p.q. Neglect-
ing the order m „/Mz, we have

Mz(e & sK P

~quiz

)

'y+

j yo
J

&y,'&=V, e' ' .

(3.1)

(3.2)

To impose NFC we introduce three different discrete
symmetries which transform the 4's and right-handed
quark s:

where

(2.16)

I p I I ql»n8

E„E + Ipl lqlcos8+8(m„/Mg )

sin9
r(p)+cos8

@'2~ UR~ +a~ UR ~

43,ER —43, —ER,

(3.3)

so that @,DR, @2UR, and C 3ER are the only three invari-
ant combinations. The most general SU~(2)XUi(1)
coupling of Higgs bosons to fermions which respects
these discrete symmetries is

r(p)=E„/Ipl . (2.17)

Now we average over the parameters p =—lpl/Mz and
0 to obtain

4
150MeV

P 177
(2.18)

It is possible to enhance P„by varying the range over
which P„ is averaged. From (2.16), we conclude that the
regions of small r (large lpl ), and 8~ 90' (sin8 large and
cos8~0) give larger P„ than the total region. Of course
the event rate would be lower, since we would be making
cuts on phase space, but some experiments may find an
enhanced P„worth that cost. In considering our three
models, we will work with the most conservative value of
P„, obtained from averaging P„over the whole region of
p and 8, as given by (2.18). Since the v is not observed
directly, our 0 may not be appropriate for some experi-
mental analyses; if so, the averaging can be redone using

1
Q t N, MDD~+

1
;e &~~'2MUQt.

Vp8

1+ .
g

L L@3MEER+H.c. ,
F03

V3e

(3.4)

where MD, MU, ME are 3 X 3 matrices in flavor space and
where the primed quarks are the SU~(2) eigenstates and
unprimed ones are the mass eigenstates:

UL
Qt= D, U =(u c t), D =(d sb),

L

LL= X =(v, v„v, ), E =(e p r ).
L

If we define XL = VLXL, where X is any fermion Aavor
triplet, then in order to generate the correct mass La-
grangian
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Ul Vl

MEED@

Ug Mv VI Dl
Ui U2

+ NLMEER +H. c. ,
U3

(3.6)

with VL—:VL VL identified as the CKM matrix, and

0,'+ =4,e
In a model with three complex Higgs doublets there

are six charged degrees of freedom and six neutral. One
of the neutrals is a Goldstone boson G and is absorbed
by the longitudinal part of Z, leaving five real neutral
fields. Two of the charged degrees of freedom are the
charged Goldstone bosons, G —,which get absorbed by
the longitudinal part of 8'—, leaving four physical
charged degrees of freedom, H +—

, and H2 . We relate the
charged partners of the three Higgs doublets P+ to the
Goldstone boson and two physical charged Higgs bosons
with the unitary matrix U +,

ss
—DLMDDii + UI Mv Uii +EI.MzER +H. c.

(3.5)

requ e MD VL MD VR where MD
=diag(mdm, mb), and similar conditions for Mv and
ME. The charged part of the Lagrangian will now be +y;NI MFE~H;+)+H. c. (3.12)

Comparing (3.11) to (3.8), we note that the a; are real,
leaving ten free parameters in (3.11) versus four in (3.8).
Thus there are six conditions, three of which are

Im(a, P*, ) = —Im(a2P2 ),
Im(a, y*, ) = —Im(a2y~ ),

Im(P, y*, ) = —Im(P~y2 ),

(3.13)

which implies that any tree-level CP-violating amplitude
from (3.12) will be proportional to (1/M2 —I/Mz). We
must have a splitting in the charged-Higgs-boson masses
to make P„WO, so we take Ml, to be smaller charged-
Higgs-boson mass, and if the other charged Higgs boson
should prove to be of comparable mass, one would re-
place 1/Ml, with (1/Mi —1/M2 ). Our final Lagrangian

—X+ =—UI VI M~ Dii h + +—
Uii M v VI Dl h +

U U

which in the unitary gauge (where G+ is absorbed as the
longitudinal part W+) yields

2—X+=—g (a;UI. VI.MaDzH; +p, UiiMvVI DI H

+—NLMEER h++H. c. ,
U

y'+ =U H+

pl+ ~+
(3.7) compared to a generalized effective Lagrangian

—X+ =Ln v UI Dii h + +Rn v U„DI h +

+I-E&HLER h + +H. c. ,

gives us the parameters

mD cz

LDU

I
Ci $1C3 S iS3

i5
C iC2$3 +$2C3e VUD

i5'
C iC2C3 S2$3eU += sic2

which can be parametrized in the same way as the CKM
matrix [7,1 1]

(3.14)

(3.15)

s is2 C iS2C 3 +C 2$ 3e
i5'

C i$2S3 C2C3'e

(3.8)

m vp"
+DU VUD

U
(3.16)

To generate the correct charged Lagrangian we require
the Goldstone boson to be

G+ =(uiP', ++uzPz++u3$3+)/u, (3.9)

Ci = V2 , V3
(3.10)

Keeping in mind Eq. (3.6), we define six complex parame-
ters a;, p;, and y, (i = 1 or 2) such that

where u = u i + u z + u 3
= (4G~ /&2) '. This condition

along with (3.7) and (3.8) provides

mEQ

m„p*
si»c

U
(3.17)

m
I.pv

where from Eqs. (3.7), (3.8), and (3.11) one can derive

which for U =u, D =s, E =p, and X=v„, determine the
parameters in (2.9),

m, a*
sinO&,

Vi
1 ai a2 G+

pi —pz— (3.11)
vIm(aP* ) = sin5' s 3c 3

Ui U2
(3.18)

I+
3

U3

72 H+
2

and

v
Im( ay' ) = sin5' s 3c 3

Ui V3
(3.19)
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Using the definition of Imp, (2.15), and neglecting m„, we
obtain

m, mz Im(ay*)
Im = sinOc

v (Ml, /M ir )
(3.20)

U).v2.v3 mb m, :m (3.21)

which reduces Im(ap*) by a small amount, but enhances
Im(ay*) by a lot,

sin6' s 3c 3 m,
Im(aP*) =—

2 1/2 mb
(3.22)

sin6' s 3c 3Im(ay*) =— m t
7

mbm
(3.23)

giving

If we make the naive assumption that v, =v2=v3, then
Im(ay')(1 and I'& is very small. However, another
reasonable assumption is that the Yukawa couplings in
(3.4), which -m /v, are all about equal in magnitude. To
generate the correct mass Lagrangian this assumption
implies the VEV's are proportional to the mass of the fer-
mions to which they couple. We make the reasonable
choice that the third family masses determine the ratio of
VEV's

VEV's are proportional to the third-family masses. (The
bigger m„ the better our claim that v2/v3 is large. )

Now we must consider constraints to this model.

B. Constraints on model B

1. Electric dipole moments

The main constraint to model B comes from the neu-
tron electric dipole moment d„. From Eq. (A8) in Ap-
pendix A, the down-quark (D =d in subscripts) contribu-
tion to d„ is approximately

Im(LdURd U )

M„2

mU mU
X 21a

M M~

u, c, t

dd=e g mU
(4~) U

(3.26)

(3.27)

since the loop fermion must be an up-type quark. We
have used QU =—', and Q = —1. Plugging in (3.16) we ob-
tain

2 2
md Im(ap'" ) "»~ m~ mU

dd =e

SI6 $3c3
Imp = 1. 1 X 10

1/2
(m, /130 GeV)

(Mh /Mir )

where, from (A6) and (A7),

I (X)= ,'I'(X)+I (—X)

which yields from (2.18) an averaged polarization of

(3.24) 1

(1—X)
1 5 2 —3X——+—X— lnX
2 6 3(1—X)

(3.28)

sin6' s 3c 3P„'=5.0X10 ' (m, /130 GeV)

(Mi, /Mir )

(3.25)

We see that the up-quark electric-dipole-moment contri-
bution to d„will be negligible in comparison to dd since

dd —lVUd~ mdmtI (where U=c or t) while d„—lV„D
&&m„mD (where D =s or b). Historically one uses the
SU(6) wave function to write [3]

Here sin5', s3, and c3 are unknown parameters in (3.8)
which have a maximal product of —,'. The top-quark
dependence results from our assumption (3.21) that the

l

d„=—', dd —
—,'d„=—', dd,

giving

(3.29)

d„=1.9X10 e cm
md Im(aP*)

300 MeV (M, /M~)'
-'ln
3

Mh

m
C

m, sin Oc

(1 GeV)

2 3X —2-'X —-'

(X —1) 3(X—1)

m,'l V„l'
(1 GeV)

(3.30)

sin6' s 3c 3

md 1/2d„=2.1X10 e cm
300 MeV (M„/M~)'

(3.31)

which for M& -M~ is less than the experimental bound

where X—:m, /Mh is not small. We will assume
Mh -M~ and m, ~ V,dl =1 GeV. Then the quantity in
brackets =0.42+0.20=0.62. Employing (3.22) we final-

ly obtain an estimate,

P~ ~ 2.3X10-'
P

m,

130 GeV
300 GeV d exPt

n

10 e cm

(3.32)

I

[12] of 1.2X10 e cm. Note that we use the safest
value for md (the constituent mass) which is often taken
to be much smaller. Normalizing d„ to 10 e cm, we

can use (3.31) in (3.25) to express the effect of d„as a con-
straint on P„,
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2. e and e'

For many models of CP violation, e,„„tprovides a big
constraint because it is difficult to generate such a large
value for e (2.2X10 ) while keeping other CP-violating
observables sufficiently small, such as e' and d„. But in
this work we do not require our models to explain the
value of e,„,(i.e., eR&e,„,), and are content to allow e,„,
to be explained by the CKM phase. Nevertheless, we
must examine e and e' to ensure neither is too large. We
being with [16]

where

—(e +2g'),1

2 2
(3.33)

ImMs, 2D

&m=
ReM i2

(3.34)

with M, 2 being the short-distance contribution to the
major part of the off-diagonal piece of the K -K mass
matrix, and where

so that P„ is not constrained to be less than 10 until
the experimental bound on d„ is of order 3 X 10 e cm,
or much less if the current md is used to calculate d„.

The electric dipole moment of the electron probably
does not provide much of a constraint on P„ for model B.
The charged sector gives d, -m which is negligible.
The neutral sector gives a nonzero contribution to d, via
the one-loop diagrams of Appendix A, but it will be pro-
portional [13] to m, . Barr and Zee have argued for a
very large d, at two loops using a heavy top quark [14],
but Gunion and Vega find that inclusion of all diagrams
gives a rather small d, [15]. In addition, d, depends on
unknown parameters in the neutral-current Lagrangian
and therefore cannot constrain P„.

Next we want to examine e'/e, which is found experi-
mentally to be [18] (2.1+1.2)X10 . In 1979, Gilman
and Wise [6] argued

e' 1 2g
20 e +2(

I

which implies

1

20
(3.39)

E'g
&7X10 4.

1500~expt
(3.40)

Actually (3.39) is incomplete and es/e, „, is probably
even smaller because long-distance (LD) effects play a
large role [19] in the calculation of e'. Employing a cal-
culation due to Donoghue and Holstein [20], we find

expt DH

& 8X10 (3.41)

3. KI Ks mass d-terence

Finally there is the KL -K& mass difference b mz.
Chang [21] has shown that for a three-doublet Weinberg
model with all three VEV's equal and Mz —15 CxeV, that
Am+ is less than the experimental value. Chang's exact
expression shows that Xmas depends only on the up-
quark VEV, and in model B v„—:v&

——v. Thus Chang's
result applies to model B, except that M&-M~. Since
4m+ goes down at least as MI, , we see immediately

(b,mx. )R «(Amx. ),„,. (3.42)

From (3.40) it is clear that e'/e cannot currently con-
strain model B, even if we neglect LD effects. Equation
(3.41) implies that the experimental bounds on e'/e
would need to come down well over an order of magni-
tude before beginning to constrain model B.

(3.35)
IV. MQDEL A

From the model B Lagrangian (3.14), one obtains [7] the
expression for e

3(m,' —m '„) lm(~p )e = 1+
M2 M

=1 5X10
(Mh /M~)

(3.36)

where rn are constituent quark masses. By (3.22) we
have, for Mh ~M~,

& 3X10-' . (3.37)

Sanda and Deshpande separately argued that [17] 2g is
just proportional to e [it also -Im(ap*)/Mi, ], and that
2g-30@ . So model B gives (ER

—=the contribution to e
from model B)

A. The Lagrangian

yO
(4.1)

as in model B, but eliminate the requirement that the
neutral scalar develop a VEV (later we will allow pA to
develop a very small VEV for renormalizability). The
most general coupling of the N~ to fermions is of the
same form as the model B Lagrangian,

GQD(Q L@A ~D R )+ UQ( R A UQL

+GLE ( L 'L C& A A EER ) +H. c. , (4.2)

We wish to construct another model that gives
effective scalar couplings. One way to do this is to intro-
duce a scalar doublet

30@ &ex t«3X10
2 2 75

(3.38)

with the important differences that the coupling con-
stants G do not depend on VEV's, and the 3 X 3 Aavor
matrices A do not necessarily derive from the quark mass
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where

V:—V A V

VE=—VLE~ AE V~E
(4.5)

To avoid FCNC's we need V and V close to or exactly
diagonal. Model B required the analogous matrices to be
the quark mass matrices, but since we are not constrained
to generate a mass Lagrangian, we choose
V =diag(V„V22V33) and V =diag(VP, VzzV33) for
simplicity. Note that we could have required V to be
diagonal instead of imposing the discrete symmetry (4.3),
but to get a small enough Am+ would then require radia-
tive corrections to the V off-diagonal elements to be
-0.5 go.

Given (4.5), the charged part of (4.2) becomes

GUQ(Uz V ~iDL)W~

matrices. We do get constraints on the 3's from FCNC's
especially for the G&D term which can generate tree-level
Am. In order to avoid this possibility, we again impose
NFC, via a single discrete symmetry,

(@A&DR&UR&+R) ( C'A&DR& UR& ER) & (43)

so that Q L 4, ADDR is not invariant. If the Lagrangian
in (4.2) is invariant under this discrete symmetry,
G&D

=0, and Am+ =0 at the tree level. We must still
look to the neutral Lagrangian for other FCNC terms,
though Am+ was the biggest such constraint. Once again
we write the weak eigenstates in terms of the mass eigen-
states, XL = VLXL, to obtain the neutral Lagrangian

UQ(UR V UL)0A+GLE(EL V ER)PA+H'

(4.4)

=(1 MeV)Vf, V33, (4.10)

for P —10 . Since V and V are arbitrary diagonalP
matrices, we can easily require Am, ((m, by making the
product Vf, V33 small, without affecting (4.9) (for which
we chose our G's such that VzzV„=1). Note that deal-

ing with this issue in no way affected P„.

6v& =GLE = 1, and CP is violated maximally, then
M& ~ 8 TeV will still give P„)10

If we were taking this model seriously as a complete
model, we would have to consider its renormalizability
and related issues. But we are interested only in the CP-
violating aspects of the model which are unlikely to be
affected by such questions. As an example, we examine
the issue of the renormalizability of the VEV in this mod-
el. P~ can get infinite contributions to its VEV via tad-
poles with fermion loops (among others), so we need to be
able to introduce counterterms in the Lagrangian to can-
cel these. To ensure renormalizability, we must allow Pz
to start with some arbitrarily small VEV, v z, which
through corrections becomes v z, which is in general
nonzero. This v~ will then introduce contributions to all
fermion masses b,mf -G(f) V(f)U~, where G(f) is either
GUQ or GLz, and V (f) is the appropriate diagonal ele-
ment of V or V ~ For all fermions except the electron,
V(f) V(t)- I will give hmf (&mf, but we must be care-
ful about the electron since its mass is so small. The fer-
mion loop tadpole gets a contribution to v~ proportional
to GUQ V33mg /Mg which in turn gives a contribution to
the electron mass of

4 GLE Gvg m, E
3

(4~) (M~ /M~) M~

+GLF(NL V E~)p„++H.c. , (4.6) B. Constraints on model A

where VL = VL VL is again the CKM matrix. Now our
effective-Lagrangian parameters are

I. Electric dipole moments

LDv =0

RDv ——Gvg VvD Vvv

L EX GLE VEE

(4.7)

The neutron electric dipole moment d„ is proportional
to Im(LDURDU) [see Eq. (A.8)], which is zero since
LDv -G&D

=0. So provided our Lagrangian is invariant
under the discrete symmetry (4.3), d„=0 at the one-loop
level. If we instead relax this assumption, we obtain

where L,Dv is zero by our discrete symmetry. Equation
(4.7) gives the parameters in (2.9),

L,,„=O

Im( GUg GgD )
d„=(10 e cm)

(M~ /M~)
(4.1 1)

R,„=—G vg V ( )* sinOc

L pv GLE V22

(4.8)

and using (2.15) and (2.18), we obtain an averaged polar-
ization of

Im(GUQGL, ~)P„=10
(M~ /M~)

(4.9)

where we have absorbed V, &
and V22 into GU~ and GLE.

This means that to achieve a P„of 10, we need

Im(GUgGLz)/(Mz/M~) —10 . For reference, if

If we arbitrarily take G&~ =G v&
=G«and maximal

semileptonic CP violation, we see from (4.9) that

pl
d„-(10 e cm) "3 sinaDU, (4.12)

10

Im(GUQGga ) = I GUg I I GgD l»naDU. Since (4.9)
does not depend on sinaav, even with the removal of the
discrete symmetry it is still possible to obtain P„—10
by requiring sinaDU 0. 1 (or identically zero). So d„
cannot constrain model A, even without the discrete sym-
metry.

The electron electric dipole moment is zero (to one-
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loop order), independent of the value for G&D, and thus
independent of our choice to impose the discrete symme-
try or not. Once again the charged sector gives d, -m,
which is negligible. The neutral sector gives very small
d, because Pz only mixed with P though loops, aside
from being proportional to m, .

2. e and e'

If the discrete symmetry (4.3) is imposed, e and e' are
identically zero. Simply put, e and e' are measures of ha-
dronic CP violation, whereas model A only has semilep-
tonic CP violation. This can be expressed by the equation

explore this possibility by introducing the scalar lepto-
quark doublet

y+ 5/3

y+ 2/3 (5.1)

which couples to fermions analogously to models A and
B

GI U—( U R4 CFLULL )+G&E(QL@CF&EER )+H.c.

(5.2)

e, e'- Im(LDURDU ) =0 .

3. KL-Ks mass di+erence

(4.13) Once again we write the weak eigenstates in terms of
the mass eigenstates, XL = VLXL, to obtain the Lagrang-
ian for scalars one and two:

The discrete symmetry (4.3) removes tree-level contri-
butions to Am+, but we still have box-diagram contribu-
tions to worry about. In model B, the dominant contri-
bution to b, mR goes as (L,„) /(M& /Miv) -2X 10
whereas in model A it goes as (R,"„) /(Mz /Mii )
-5 X 10 . Thus we have

—X,= GI U( UR V, NL )1),+ G(2E (DI V 1 ER )$1+H. c. ,

(5.3)

—Ã2= —GLU( UR V2 EL )42+GgE( UL VpER )$2+ H. c. ,

(5.4)

(bmR )„&(bmR )R «(bmx. ),„,, (4 14) where we have, from left-handed couplings,

showing that Am+ is not a constraint to model A either. VI U VUtF VN VU)g VE VLU
R LU L R LU L 2 (5.5)

V. MODEL C

A. The Lagrangian

As we stated, one can generate X,ff in (2.8) via a Fierz
transformation of, for example, a leptoquark model. We

I

V~ =VL FgEV =VLV FgEVR=VLt VP, (5.6)

where VI =—VL VL is again the CKM matrix. Now the
two-family Lagrangians are

and

Xi —GLU[c 1 (QR VeL )+C 1 (CRVpL )+S 1 (tlR V~L ) $1 (CR VeL )]$1

+GQE~C1 (dLeR )+c 1 (SLP'R )+S1 (dLP'R ) Sl (SLeR )]41+H.c. (5.7)

+2 GLUI. 2 (+R L )+ 2 ( RP'L )+S2 (~RI L ) 2 ( ReL )]02

+GgE[cp(BLeR)+Cp(CLpR)+Sp(PL1MR) Sp(CLeR)]$2+H. c.

where we define the sines and cosines c, and s1 by

(5.8)

(5.9)

LU LU

LU
1 $1

V1 LU LU

and similarly for c ~1, s ~1, and (1~2). One can see immediately that X, will contribute to P„via the underlined terms
in (5.7), while giving zero for all purely hadronic and purely leptonic CP-violating observables (e,e,d„,d, ). Conversely,
%2 can give finite values to all of these quantities, except P„.As we will see later, this means we can avoid constraints
on X2 by putting conditions on s2, cp, and M2, without affecting P„.

Using the underlined terms in (5.7), we write

jef 2 C1 Si (SLpR )(VyLQR )+H cQE LU gE
M1

which after a Fierz transformation yields

GQEGLU E LUjef C 1
~$

1 [T~(SL QR )( VpLpR ) + 8 ( CT SLUR )( VpL CTp~R ) ]+H. C.
M1

(5.10)

(5.11)
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Both the scalar and tensor pieces contribute to P„on the
quark level in a way markedly diferent from at the ha-
dronic level. For example on the quark level, a helicity
Hip makes both contributions proportional to the current
up-quark mass (m„), while no such suppression occurs on
the hadronic level because the hadronic matrix element
contains no axial-vector or pseudoscalar pieces [see (2.5)],
and some constituent m„applies. For simplicity we ex-
amine the scalar contribution to I'„,

S

xL,
e

FIG. 2. Contribution to E ~p+e from scalar leptoquark
I &. (Labels as in Fig. 1.)

Im( GgE GL'U )

(Mi /M~)

which gives an averaged polarization of

(S.12)
8 (KI.~Pe ) B(K+~pv) =20 .

B(KL —+m pe) B(K+~n pv)
(5.17)

I"=22c &Es~UR
(M, /M~)

with

Im( Ggx GL*U )

IGg~ I IGgUI

(S.13)

(5.14)

Since KL ~pe and E+—+p+v have the same behavior,
their ratio is just the ratio of the coupling constants:

r(K &e), IG&= —,', ( GFM~ sinO, )

(S.18)

But to get B(KI ~pe), one needs to take into account
the di8'erence in the KI and K+ lifetimes,

(5.15)

R=
I GgE I

(5.16)

The biggest constraint to P„comes from KL ~pe,
which —

I G&E I /(M, /M~), but the ratio of the
Yukawa-like couplings (R) can still be large, and will
indeed have to be in order that P„not be too small. If
the couplings in (5.2) were mass couplings using a single
VEV, then each of the 6's would be proportional to the
mass of the right-handed quarks. Of course G&E and
GL U are not mass couplings, but in the same spirit as the
choice (3.21) for model 8, we can argue that it is reason
able that R be of the order of the ratio of the two right-
handed fermions (in the third family) to which each G
couples:

which combined with (5.18) and (5.13) gives

B(KL —+pe)=3.0X10 "(cP s, s& )
E LU —2

—2

pl

10

2

(5.20)

resulting in the constraint

P„~26 Xl 0(cP s, st )
72

' 1/28'"~'(KL —&pe )

2X io-"
(5.21)

~(KL ) I (Ki ~pe)
B(KI —&pe ) =8(K ~p+v)

v.(K+ ) I (K+ ~p+ v)

(5.19)

B. Constraints on model C

1. Rare K decays

As stated above, we will get a large constraint on G&E
from KI ~pe, but R can be as large as (5.16) because the
rare K decay constraints on Gi U are much weaker than
those on G&E. This results from the fact that GL U cou-
plings involve only neutrinos and up-type quarks, and not
strange quarks. For example, the branching ratio of
K —+~vv is very small in model C, because one needs at
least one 8', giving an extra factor of GF in the arnpli-
tude.

The dominant constraints to G&E are from %Lope
and KI ~w pe (Figs. 2 and 3). After a Fierz transform,
one can write each of them as multiples of K+ —+p+v
and K —+m p v, respectively, giving

We have normalized R to the same value as v2/v3 in
model 8, and 8'" '(KI ~pe ) is normalized to the current
experimental bound [22]. If cP s& s, is not too small
(since they are independent sines and cosines their prod-
uct can be as large as unity), P„—10 is still allowed by
EI -+pe.

FIG. 3. Contribution to K —+m p+e from scalar lepto-
quark I.l. (Labels as in Fig. 1.)
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2. p —+ey and pN~eN VI. DISCUSSION OF X~mpp

l&2l =Cm„(s2 ) (c2 )
I
GLUI'

(M~/Mii, )
(5.22)

One does get a constraint on P„ from @~ed, and a
lesser constraint from pX~eN, but both are smaller con-
straints on X, (and thus P„) than KL ~pe. The main
concern is how these two processes constrain X2. Since
the matrix elements for these processes have the same
form

We now briefly discuss model-8 contributions to the
rare K decays K ~mpp because they have the interesting
property that all three independent CP-violating
coeScients arise and can contribute to the transverse po-
larization of a muon, P„(crap). There are contributions
from the h penguin diagrams (where a W in the
standard-model penguin diagram is replaced by an h) and
h W box diagrams (where one Win a WWbox replaced by
an h) that depend on the three CP-violating coefficients

R
c QESLU )2

Now s, =sz by (5.5), so we can write

we will concentrate on the larger process, prey (see
Fig. 4), for which the constant C —10 ' ln (m2/Mz).
Using (5.13) and (5.15), we can relate (5.22) to P„:

5.23
(M2/Mii, )

P

d„and P„(vrpp)h, „„;„-Im(aP')—VU3

U)U2

P„'(~I P )hw b.,-Im(A'*)- VUi

U2U3

P„(mdiv) and P„(imp, )hii, b,„—Im(ay")—
UiU3

(6.1)

8(prey) =0.015 ln M'
2

(c, )
LU 2

2

4 2pl

10

(5.24)

which means to satisfy the bound [23] 8 (prey)
~4X10 "for a P„—10,we require

M2~+c2 10 M) . (5.25)

3. 6,d„, Q7ld d~

Since X, only has semileptonic CP violation, and no
purely hadronic or purely leptonic CP violation, e, e', d„,
and d, are all zero. The other part of the Lagrangian,
%2, can contribute to any of these quantities but because
of (5.25) their magnitudes will be negligible.

Thus we must set sz —+1 and M2 &&M& in some com-
bination to satisfy (5.25). We have complete freedom to
specify c2 because of the flavor matrix FLU in (5.2).
However c& ~ 10 is unnatural, so some mass splitting
is presumably required. This could be achieved by allow-
ing the leptoquark mass matrix to have a zero eigenvalue
and (say) letting M, be generated through radiative
corrections. As stated before, X2 does not directly afFect
P„and therefore cannot constrain it, though (5.25) is
needed to be consistent with 8 (p —&ey).

where for reference we have noted the behavior of d„and
P„(mdiv). Recent calculations [24] show that these dia-
grams get a large enhancement proportional to m, , but
unfortunately the ratio of the couplings of the Higgs bo-
son diagrams to those of the 8'diagrams is still small. A
preliminary estimate shows that for the decay
K+ ~a.+p+p [which should have [25] a branching ra-
tio ~ 10 since 8'"~'(K+ —+m+e+e ) -3X 10 ], P„ is
probably small even for large ratios of VEV's.

The decay KL —+~ p+p is quite difFerent because it is
essentially a CP-violating decay (there is a CP-conserving
two-photon contribution which is expected to be small)
[24], so its contribution from the standard model is ex-
pected to be quite small [a rough estimate of the rate is
e I (K+~a p, +p )]. Model B will suffer no such
suppression, and in fact is helped because there are no
longer any CP-conserving terms contributing to the
denominator of P„. A P„oforder unity is not unreason-
able. The problem is that the standard-model contribu-
tion to the CP-violating P„can now, in principle, be
large, so P„ in KL —+~ p+p might still not be a good
signal for non-standard-model CP violation. This point
needs further analysis. However, it is still possible to see
the efFect of a CP-violating multi-Higgs-boson model in
the branching ratio itself. The key point is that since the
hW box diagram is proportional to the outgoing lepton
mass, one can get a large contribution to
8 (KL ~m. p+p ) but a negligible contribution to
8 (KI ~~ e e ), so that, for some range of parameters,

8(KI ~n p+p)&B(KL~, vr e+e ), (6.2)

s /
/

C

which would clearly point to physics beyond the standard
model.

VII. CONCLUDING REMARKS

FICx. 4. Contribution to prey from scalar leptoquark L2.
[There is also a diagram with the topology of 5(b). Labels as in
Fig. 1.]

We have presented three models which achieve the
desired goal of generating P„—10 such that each mod-
el satisfies existing experimental constraints. Most mod-
els of CP violation get constrained by d„, e, or e', but
models A and C do not because they only generate semi-
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leptonic CP violation whereas the other observables come
from hadronic CP violation. There are other types of
constraints on these models (for example rare K decays
constrain model C), but we find it intriguing that CP
violation from models A and C could be seen only in a
semileptonic process. Model B (which uses three Higgs
doublets) can potentially be constrained by d„, e, or e' be-
cause it generates hadronic as well as semileptonic CP
violation. As we have seen, these observables do not
bound P„ to be below 10 because having VEV's pro-
portional to fermion masses enhances the coefficient
Im(ay*) for P„wit hout substantially affecting Im(aP*),
the coefficient of the constraints. We also show that
there is some hope of seeing CP violation in the decay
EL ~m. p+p, but that further investigation is needed.

Finally we note that there have been several recent at™
tempts [26] to explain the observed baryon asymmetry of
the Universe using B violation that may occur at high
temperatures in the standard model, and CP violation in
the Higgs potential of multiple-Higgs-doublet models.
The results are consistent (within large theoretical uncer-
tainties) with the value of the baryon asymmetry of the
Universe deduced from primordial nucleosynthesis. A
wide class of multiple-Higgs-doublet models can generate
the necessary CP violation since the parameters in the
Higgs potential are rather unconstrained. One constraint
is that the lightest Higgs boson should not have a mass
much greater than M~, but in models such as model 8,
this condition can still be met even if the bounds on d„
drop significantly because there are large regions of al-
lowed parameter space where the CP-violating coefficient
Im(aP*) is small. Since multiple-Higgs-doublet models
can also potentially generate a detectable P„, perhaps CP
violation in K —+mpv could be related to explaining the
observed baryon-number asymmetry.

We reiterate that our purpose in proposing these three
models is to help justify an experimental search for P„by
showing that there is plenty of room for seeing CP viola-
tion in E —+mpv, and not necessarily to tout the models
as good approximations of reality. We assume there are a
number of additional models which could be written
which give a large P„while satisfying relevant experi-
mental constraints. Should an effect be detected, we
would welcome the challenge of theoretically untangling
the results.

We conclude by emphasizing that even after further
examination, CP-violating observables in semileptonic E
decays, particularly the transverse polarization of the
muon, remain an underexploited and potentially valuable
tool for studying CP violation and for detecting physics
beyond the standard model.
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APPENDIX A: ELECTRIC DIPOLE MOMENTS

Since we use constraints from electric dipole moments
several times, in this appendix we write the one-loop con-

(a)
/

/
f ( F f /

I
f t F f

tribution to the electric dipole moment df of an arbitrary
fermion f arising from the scalar Lagrangian:

X=LfpfzFL Px+Rf~fLFzg„+H. c. (A 1)

We label the contribution of F to the electric dipole as

de In general there will be several F's contributing to
df, each with a different LfF, Rfz, and m~, so that

df g dfF (A2)
F

There are two diagrams which contribute to dfF [Figs.
5(a) and 5(b)], which we label (a) and (b), giving electric
dipole moments dfF and df~', respectively. We obtain

Im(LfpRfp) I~~~(X)
(A3)M„(4m )

dfF QFemF

where
2

m&X:—
M

Im(LJ+R fF ) I~b~(X)

M (4m)
(A4)

(A5)

and where QFe and Q„e are the charges of fermion F and
scalar P„, respectively. The integrals I" and I'"' are
over Feynman parameters, and have values (assuming
mf «mF)

1
2

I"(X)=
o 1 —y(1 —X)

(A6)
1

(1—X)
3 1 1——+—X— lnX
2 2 1 —X

2
I"'(X)=J d

o 1 —y(1 —X)

—(1+X)+ lnX
(1—X) 1 —X

Using (A5), (A3), and (A4) in (A2), we obtain the fermion
electric dipole moment

Im(LfFRfF )

M

EB
X QI"

MX

1df=e pm~(4'�) p

Q I(b)
2PlF

(AS)

FIG. 5. One-loop quark level contributions to dfF (fermion
F's contribution to the electric dipole moment of fermion f)
from scalar P. Diagram 5(b) is only present for charged scalars.
[Labels as in Fig. 1.]
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