Development of Realtime ⁹⁰Sr Counter

S. lijima¹, H. Ito^{1,3}, D. Kumogoshi¹, K. Satoshi¹, H. Kawai¹, M. Tabata^{1,2}, K. Mase¹, H. Nakayama⁴ ¹Chiba University, Chiba, Japan, ²Japan Aerospace Exporation Agency(JAXA), Sagamihara, Japan ³National Institute of Radiological Science, Chiba, Japan, ⁴Kisarazu National College of Technology, Kisarazu, Japan

Introduction

Because of the March, 2011 disaster of Fukushima No.1 nuclear power plant, a large amount of radioactive substance(including ⁹⁰Sr and ¹³⁷Cs) was released into the Japanes coast of the Pacific Ocean.

⁹⁰Sr can be 100 times more dangerous than ¹³⁷Cs because which can be concentrated in fishes and sea foods.

Since ⁹⁰Sr does not emit γ rays, it is very difficult to measure its radioactivity.

We propose a threshold-type Cherenkov counter using silica aerogel with a refractive index n~1.04.

IEEE

Nuclear

Science

Symposium

NPO1-169

YOU

BIG FISH

BIG FISH

FISH

How to detect⁹⁰Sr traditionally??

Standard beta-ray counters such as a rangecounter, calorimeter and spectrometer can not identify ⁹⁰Sr when the sample also includes ⁴⁰K, ⁶⁰Co, ¹³¹I, ¹³⁷Cs and/or other radioisotopes. Therefore, the traditional way is separating ⁹⁰Sr chemically and determining radiation level directly. However the process is too slow to sell fresh seafood at fish market.

Is there an alternative method of detecting ⁹⁰Sr in an hour?

problem

⁹⁰Sr's rate drops linearly, but, ¹³⁷Cs's rate does not change because of its γ beam. Paper can not stop γ beam. Thus, maximum ratio between ⁹⁰Sr and ¹³⁷Cs is obtained at about 0.5cm, but down gradually.

If there is high radioactive concentration, we detect multiple ¹³⁷Cs in one time. Then it is

Detecter Under Development

FISH

PLANKTON

Principle & Test

In the substance which index is n, if the velocity of charged particle exceed c/n, chelenkov light will emit. Using *Silica* Aerogel with refractive index n~1.04, 2.28MeV β ray from ⁹⁰Sr emit cherenkov light, but 1.174MeV β ray from ¹³⁷Cs do not emit.

90**Sr** Cherenkov light!!

213 143.1 56.98

Entries Mean RMS

BG

Source

PMT 1

difficult to distinguish ⁹⁰Sr and ¹³⁷Cs. On the other hand, if there is low level substance, big size source & scintillator (&money) will be necessary. But attenation length of scintillator is oder of 10cm, so concentrating light will not be optimal.

Conclusion

Count

Required time to identify ⁹⁰Sr(lowest level)

If there is no ¹³⁷Cs, 1minutes : 1.32Bq/cm² 10minutes : $0.84Bq/cm^2$ 60minutes : 0.71Bq/cm²

There is 100Bq ¹³⁷Cs, 1minutes : $2.65Bq/cm^2$ 10minutes : $1.88Bq/cm^2$ 60minutes : 1.67Bq/cm²

This result is the value that count of ⁹⁰Sr is over the background level. Considering $3\sigma = 3^*\sqrt{(CountOfBackground+CountOf^{137}Cs)}$.

<u>What is Silica Aerogel?</u>

Glass with the air. It can be made very low density and arbitrary reflactive index(1.003~1.3). Silica aerogel is widely used in many high energy experiments.

Plans for the future

We will make a two handy type detecters as light as possible because it is necessary to use it at fish market, and investigate ⁹⁰Sr is inside the fish instantly. One type will be used at low radioactive rate. This detecter reads cherenkov light by PMT directly because of raising efficiency. Another type use wave length shifting fiber(wlsf), and will be used at high radioactive rate.

Large type

Putting big size sample to raise rate of β ray from ⁹⁰Sr. It needs big size of aerogel and PMT, but this is solved by using wlsf. Setting this fiber above the aerogel to absorve cherenkov light and transmit reemission light to PMT at both side. Because of using wlsf, intensity become 1/10, however, sample size is arbitrary changed. If we set sample size 1m*2m, required lowest count of ⁹⁰Sr will be 1/800.

Improvement

• Putting the lead plate on a course of γ ray from ¹³⁷Cs because of reduce cherenkov right at glass of the PMT. (Actually, it can not ignore that cherenkov from γ ray. We used PMT which

shielded to stop the light, but it do not have an effect.)

•Narrowing width of discriminator and reducing the thermal noise.

•Setting scintillator for veto of muon.