改良型UNI検出器を用いた ポジトロニウム5光子崩壊事象の観測

吉川 広陽 首都大学東京

ポジトロニウム(Ps)

・電子と陽電子の電磁相互作用による束縛状態⇒レプトン系・質量1022 keV⇒低エネルギー

→強い相互作用,弱い相互作用の影響が少ない 量子電磁力学のみで記述できる

	パラポジトロニウム	オルソポジトロニウム	
スピン	0(一重項)	1 (三重項)	
真空中の寿命	125 ps	142 ns	
崩壊光子数	偶数個(主に2光子)	奇数個(主に3光子)	

実験目的

オルソポジトロニウムの崩壊分岐比の理論値

$$\frac{\lambda_{5\gamma}}{\lambda_{3\gamma}} = (0.9591 \pm 0.0008) \times 10^{-6}$$

[Toshihiro Matsumoto et al., Phys. Rev. A54(1996)1947-1951.]

世界でもまだ検出されていない ポジトロニウム5光子崩壊事象の検出を目指す。 純粋な高次QEDのみを検証可能

UNI検出器

- 32面体(サッカーボール構造)
- 30面にNalシンチレーター
 (直径3インチ,厚み4インチ)
- 中心にポジトロニウム生成部

ポジトロニウムの崩壊光子 を30本のNalでとらえる

崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

UNI検出器

- 32面体(サッカーボール構造)
- 30面にNalシンチレーター
 (直径3インチ,厚み4インチ)
- 中心にポジトロニウム生成部

ポジトロニウムの崩壊光子 を30本のNalでとらえる

崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

UNI検出器

32面体(サッカーボール構造 トリガー用 • 30面にNalシンチレーター PMT (直径3インチ,厚み4インチ) • 中心にポジトロニウム生成部 ポジトロニウムの崩壊光子 を30本のNalでとらえる

> 崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

これまでの実験結果

- 10¹⁰ オルソ-Ps相当のイベントを取得 (2006年~2014年)
 - ➡1022 keV付近に24 個のイベント が観測されたが...
- GEANTシミュレーションによる期待値
 - 5光子崩壊事象 0.035 個 (セレクション後)
 - 3光子崩壊によるバックグラウンド(BG)
 20 個 (セレクション後)

観測されたイベントは全てBGと解釈できる。

・期待される信号数が少ない
 ・BGが非常に大きい

検出装置の改良を行った

ポジトロニウム生成部(改良前)

ポジトロニウム生成部(改良前)

左 :従来の		ドの	強化	コンプトン BG事象	散乱による えを減少	10
右:強化後 10 cm	の鉛シールド	30 cm				
Nalの →立)距離を離す必要か 体角によるアクセプ	「ある」 『タンスの』	減少			
	Ps 生成部 <i>,</i> Nal間 距離	160 mm	260 mm		ments	
	アクセプタンス	42.5 %	16.1 %			
• 5光 • 3光	子崩壊事象検出期 子崩壊BG➡10 ⁻⁵ 倍	待値➡1(テ (シミュレ・) ⁻¹ 倍 ーション結果)	个 主なBG事象		
	ᢊᡐ᠐᠐ᢊᡏᢊ᠈ᠳᡗᠻᡌ	J		(3光子崩壊➡コ)	ンプトン散乱➡5⊦	lit)

左 :従来の		ドの	強化	コンプトン散き BG事象を	乱による ¹¹ 減少
右:強化後 10 cm	の鉛シールド	30 cm			
Nalの →立	D距離を離す必要か 体角によるアクセプ	「ある」 『タンスの』	減少		
	Ps 生成部 <i>,</i> Nal間 距離	160 mm	260 mm		
	アクセプタンス	42.5 %	16.1 %		
• 5光 • 3光	子崩壊事象検出期 子崩壊BG ➡10^{−5}倍	待值 ➡1(テ (シミュレ・) ⁻¹ 倍 ーション結果)		
効果	的なBG排除が可能			↑ 主なBG事象 (3光子崩壊 ➡コンプ	トン散乱➡5Hit)

Ps生成部の改良

トリガーレート

0.42 kHz

230 kHz

鉛シールドの強化 ポジトロニウム 生成部の改良					
(年間)	改良前	改良後			
期待される 5光子崩壊事象数	0.0043個	6.8 ± 2.6個			
BGの数	2.5個	0.66個			
S/N	0.0018	10			

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

稀崩壊事象観測

5光子崩壊の解析

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

稀崩壊事象観測

5光子崩壊の解析

3光子崩壊事象の解析_(3Hit以上でTrigger)²²

測定データ(約18時間)から3光子崩壊と思われる事象を選んでいく

		イベント数
******	解析した全イベント数	4,150,000
2光子崩壊は Back-to-Backに 崩壊する 3光子崩壊は 同一平面に 崩壊する	3Hitのイベント数	2,607,912
	⊾Back-to-Backを排除 (Trigger時にも排除している)	2,413,454
	៹同一平面Hitを選択	801,177
	崩壊時間 > 10 ns, Hit時間のばらつき < 7.5 nsを選択	522,608
	運動量和 < 90 keVを選択	304,800
	922 keV < エネルギー和 < 1122 keVを選択	289,431

ポジトロニウムと物質効果

<u>ピックオフ消滅</u>

物質の密度が大きい ほど確率増大

大気中では酸素が 不対電子を持つ

主に上記の反応により物質中では 真空中より短い寿命で崩壊する

3光子崩壊事象の解析

物質効果の寿命への影響 酸素は不対電子を持つ 実験では窒素を流している。

スピン交換:o-Ps → p-Ps → 崩壊

25

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

希崩壊事象観測

5光子崩壊の解析

BG排除方法の改良

27

5光子崩壊の解析

データ(約4か月分)から5光子崩壊と思われるデータを選ぶ

5光子崩壊の解析

データ(約4か月分)から5光子崩壊と思われるデータを選ぶ

TimeWalk補正の改善

5光子崩壊4Hit事象の利用

5光子崩壊4Hit事象の利用

まとめ

- ・以下の検出装置の改良を行った。
 -鉛シールドの強化によるBGの減少
 -ポジトロニウム生成部の改良によるイベント数の増加
- データの取得を開始し、3光子崩壊、5光子崩壊について解析を 行った。
- ・3光子崩壊事象解析から期待通りの
 オルソポジトロニウムの寿命が観測できた。
- 5光子崩壊事象解析から、現時点で4個の5光子崩壊事象候補 を観測。
- ・1年間の測定で6個ほどの5光子崩壊事象の検出が期待される。

ポジトロニウム

荷電共役変換の固有値 C

	パラポジトロニウム	オルソポジトロニウム
スピン	0(一重項)	1 (三重項)
寿命	125ps	142ns
崩壊光子数	偶数個(主に2光子)	奇数個(主に3光子)
С	1	-1

n本のγ線に崩壊する場合の 荷電共役変換の固有値は*C* = (-1)ⁿ

Nal(Tl)シンチレーター

 Nal(TI)の結晶にγ線が入射すると両者の相互作用 (光電子効果、コンプトン散乱、電子対生成)によっ て2次電子がNal(TI)結晶物質を励起し、励起状態 が定常状態に戻る時、分子がシンチレーションと 呼ばれる閃光を発生する。

シリカエアリゲルによるPs生成

・低密度、均質、表面積が大きい。
 →ポジトロニウム(Ps)の生成に適している
 ・陽電子が入射し、内部で減速した後、
 表面の電子とポジトロニウムを生成。

• 過去の実験結果

Figure 4.19: Display of Ps formation assembly.

Figure 4.35: Time spectrum of three-photon annihilation events. The shaded area near 0 ns shows prompt annihilation of free electron and free positron. The line shows fitted result with the lifetime of 120.6 ± 2.0 ns.

```
120.6 <u>±</u> 2.0 ns
(窒素中)
```

41

(松本利広博士論文1997年)

誤差/值=	2.24205E-10				
電子磁気モー	メントの理論計算のの	aのオーダー			
(α)^-5 =	2.07204E-11				
ポジトロニウムの5光子消滅過程は低次を除いて高次のみの値を得られる					
$(\alpha)^{-8} =$	8.05815E-18				
ポジトロニウム原子のα^3を除いた場合					
$(\alpha)^{-5} =$	2.07204E-11				
まとめ					
ポジトロニウムの5光子消滅過程は低次を除いても					
電子の異常磁気モーメントより1桁よい精度が得られる。					
原子の波動関数を入れると8桁精度がよい。					

データ取得回路概略(ADC編)

BackToBack排除回路

崩壊時間測定

Psの即時崩壊⇒Ps生成タイミングとする(0ns)

PMT+Nalの取り付け

鉛の拡大の効果

陽電子トリガー12kHzを仮定したときの5ヒットイベントで得られる年間期待値

ー・ヒット数とエネルギーで3光子崩壊によるBGを大幅に落とせる

データ取得回路概略(ADC編)

得られたデータから3ガンマ崩壊と思われるデータを選ぶ

5光子崩壊事象選別条件

1ビット数 =5
 2運動量和に対して

$$|S_{i=1}^{5}\vec{P}_{i}| \pm 90[keV/c]$$

③崩壊エネルギー = m_{e⁻} + m_{e⁺} = 1022[keV] トータルエネルギーに対して

962[*keV*]
$$\pounds S_{i=1}^{5} E_{i} \pounds 1082[keV]$$