改良型UNI検出器を用いたポジトロニウム5光子崩壊事象の観測

吉川 広陽 首都大学東京

ポジトロニウム(Ps)

- 電子と陽電子の電磁相互作用による束縛状態⇒レプトン系
- •質量1022 keV→低エネルギー
 - →強い相互作用,弱い相互作用の影響が少ない 量子電磁力学のみで記述できる

	パラポジトロニウム	オルソポジトロニウム
スピン	0 (一重項)	1 (三重項)
真空中の寿命	125 ps	142 ns
崩壊光子数	偶数個(主に2光子)	奇数個(主に3光子)

実験目的

オルソポジトロニウムの崩壊分岐比の理論値

$$\frac{\lambda_{5\gamma}}{\lambda_{3\gamma}} = (0.9591 \pm 0.0008) \times 10^{-6}$$

[Toshihiro Matsumoto et al., Phys. Rev. A54(1996)1947-1951.]

世界でもまだ検出されていない ポジトロニウム5光子崩壊事象の検出を目指す。 純粋な高次QEDのみを検証可能

UNI検出器

- 32面体(サッカーボール構造)
- 30面にNalシンチレーター (直径3インチ,厚み4インチ)
- ・ 中心にポジトロニウム生成部

ポジトロニウムの崩壊光子 を30本のNalでとらえる

崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

UNI検出器

- 32面体(サッカーボール構造)
- 30面にNalシンチレーター (直径3インチ,厚み4インチ)
- 中心にポジトロニウム生成部

ポジトロニウムの崩壊光子 を30本のNalでとらえる

崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

UNI検出器

• 32面体(サッカーボール構造

30面にNalシンチレーター (直径3インチ, 厚み4インチ)

• 中心にポジトロニウム生成部

ポジトロニウムの崩壊光子 を30本のNalでとらえる

崩壊光子のエネルギー和は1022 keV 運動量和は 0 keV/c

これまでの実験結果

- 10¹⁰オルソ-Ps相当のイベントを取得 (2006年~2014年)
 - →1022 keV付近に24 個のイベント が観測されたが...
- GEANTシミュレーションによる期待値
 - 5光子崩壊事象0.035 個 (セレクション後)
 - 3光子崩壊によるバックグラウンド(BG)20個(セレクション後)

観測されたイベントは全てBGと解釈できる。

- 期待される信号数が少ない
- •BGが非常に大きい

検出装置の改良を行った

个 主なBG事象 (3光子崩壊 ➡コンプトン散乱 ➡5Hit)

ポジトロニウム生成部(改良前)

 β^+ 崩壊: ²²Na \rightarrow ²²Ne + e⁺ + ν_e

陽電子を多孔質(シリカエアロゲル) に入射し、ポジトロニウムを生成できる

を輸送、検出器中心で ポジトロニウムを生成

ポジトロニウム生成部(改良前)

 β +崩壊: ²²Na \rightarrow ²²Ne + e⁺ + ν_e

陽電子を多孔質(シリカエアロゲル) に入射し、ポジトロニウムを生成できる

問題点

- 厚さ0.1 mmのステンレス真空パイプを使用
 - →物質量が多い
- ・ 構造上、鉛シールドを長くできない
- 生成した陽電子のうち、ターゲットに到達 するものが少ない
 - →ポジトロニウム生成数が少ない

鉛シールドの強化

コンプトン散乱による BG事象を減少

10

cm

NaIの距離を離す必要がある →立体角によるアクセプタンスの減少

Ps 生成部, Nal間 距離	160 mm	260 mm
アクセプタンス	42.5 %	16.1 %

- 5光子崩壊事象検出期待值➡10⁻¹倍
- 3光子崩壊BG**➡10⁻⁵倍**

(シミュレーション結果)

効果的なBG排除が可能

鉛シールドの強化

コンプトン散乱による BG事象を減少

10

cm

NaIの距離を離す必要がある →立体角によるアクセプタンスの減少

Ps 生成部, Nal間 距離	160 mm	260 mm
アクセプタンス	42.5 %	16.1 %

- 5光子崩壊事象検出期待值➡10⁻¹倍
- 3光子崩壊BG**→10⁻⁵倍**

(シミュレーション結果)

効果的なBG排除が可能

球殼内部

 22 Na \rightarrow 22 Ne + e⁺ + ν_e

線源強度:380 kBq

(2017年2月)

・イベント数の増加

➡検出器内部に陽電子線源

• コンプトン散乱の低減

➡物質量を少なく

陽電子線源 十 Ps生成部

 22 Na \rightarrow 22 Ne + e⁺ + ν_e

線源強度:380 kBq

- ・イベント数の増加
 - ➡検出器内部に陽電子線源
- ・コンプトン散乱の低減
 - ➡物質量を少なく

 22 Na \rightarrow 22 Ne + e⁺ + ν_e カーボンロッド (Φ0.15 mm)

線源強度:380 kBq

(2017年2月)

- ・イベント数の増加
 - ➡検出器内部に陽電子線源
- ・コンプトン散乱の低減
 - ➡物質量を少なく

アルミナイズド マイラー(15 µm厚)

> トリガー信号として検出 Ps生成時間とする

光電子増倍管

アルミナイズドマイラーで全体を巻く

光電子増倍管

Ps生成部の改良

 22 Na \rightarrow 22 Ne + e⁺ + ν_e カーボンロッド

(Φ0.15 mm)

線源強度:380 kBq

(2017年2月)

- ・イベント数の増加
 - ➡検出器内部に陽電子線源
- ・コンプトン散乱の低減
 - ➡物質量を少なく

アルミナイズド

窒素ガス

アルミナイズドマイラーで全体を巻く

Nalと線源間の 物質量が極小

	改良前 (2013年12月)	改良後 (2017年2月測定)
トリガーレート	0.42 kHz	230 kHz

改良前後比較

鉛シールドの強化

ポジトロニウム生成部の改良

データの取得を開始

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

稀崩壊事象観測

5光子崩壊の解析

データの取得を開始

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

稀崩壊事象観測

5光子崩壊の解析

測定データ(約18時間)から3光子崩壊と思われる事象を選んでいく

		イベント数
	解析した全イベント数	4,150,000
2光子崩壊は Back-to-Backに 崩壊する 3光子崩壊は 同一平面に 崩壊する	3Hitのイベント数	2,607,912
	」Back-to-Backを排除 (Trigger時にも排除している)	2,413,454
	同一平面Hitを選択	801,177
	崩壊時間 > 10 ns, Hit時間のばらつき < 7.5 nsを選択	522,608
	運動量和 < 90 keVを選択	304,800
	922 keV < エネルギー和 < 1122 keVを選択	289,431

3光子崩壊事象の解析

期待通りポジトロニウム崩壊事象を観測できた。

オルソポジトロニウムの寿命(真空中) 142 ns

結果から得られた寿命 127.9 ± 1.3 ns

物質効果により寿命が短くなる

ポジトロニウムと物質効果

ピックオフ消滅

物質の密度が大きい ほど確率増大

スピン交換

大気中では酸素が 不対電子を持つ

主に上記の反応により物質中では真空中より短い寿命で崩壊する

3光子崩壊事象の解析

物質効果の寿命への影響

酸素は不対電子を持つ実験では窒素を流している。

スピン交換: o-Ps → p-Ps → 崩壊

データの取得を開始

検出装置の改良を終え、 2017年1月からデータの取得を開始した。

性能評価のための

3光子崩壊の解析

希崩壊事象観測

5光子崩壊の解析

BG排除方法の改良

運動量保存から $|\overrightarrow{P_1} + \overrightarrow{P_2}| = |\overrightarrow{P_3}| = E_3$

3光子崩壊再構成エネルギー $E_1 + E_2 + |\overrightarrow{P_1} + \overrightarrow{P_2}|$ = 1022 keV

全ての2Hitの組み合わせ($_5C_2$) でこれを確認

同一平面3Hitを排除するより 検出効率の高いBG排除方法 (5光子崩壊事象は同一平面Hitも含み得る)

5光子崩壊の解析

TimeWalk補正の改善

これを改善→時間情報の改善

5光子崩壊4Hit事象の利用

$$E_5 = \left| \overrightarrow{P_1} + \overrightarrow{P_2} + \overrightarrow{P_3} + \overrightarrow{P_4} \right|$$

5光子崩壊再構成エネルギー

$$\sum_{i}^{4} E_{i} + \left| \sum_{i}^{4} \overrightarrow{P_{i}} \right| = 1022 \text{ keV}$$

Reconstructed Energy

5光子崩壊4Hit事象の利用

	5Hitイベント	4Hitイベント
イベント数	6.4 ± 2.6	413 ± 47
S/N	10	0.2

5光子崩壊4Hit事象の利用

	5Hitイベント	4Hitイベント
イベント数	6.4 ± 2.6	413 ± 47
S/N	10	0.2

まとめ

- ・以下の検出装置の改良を行った。
 - -鉛シールドの強化によるBGの減少
 - -ポジトロニウム生成部の改良によるイベント数の増加
- ・データの取得を開始し、3光子崩壊、5光子崩壊について解析を 行った。
- ・3光子崩壊事象解析から期待通りの オルソポジトロニウムの寿命が観測できた。
- 5光子崩壊事象解析から、現時点で4個の5光子崩壊事象候補 を観測。
- ・1年間の測定で6個ほどの5光子崩壊事象の検出が期待される。

ポジトロニウム

para Positronium

ortho Positronium

荷電共役変換の固有値 C

	パラポジトロニウム	オルソポジトロニウム
スピン	0 (一重項)	1 (三重項)
寿命	125ps	142ns
崩壊光子数	偶数個(主に2光子)	奇数個(主に3光子)
С	1	-1

n 本の γ 線に崩壊する場合の 荷電共役変換の固有値は $C = (-1)^n$

Nal(TI)シンチレーター

• NaI(TI)の結晶にγ線が入射すると両者の相互作用 (光電子効果、コンプトン散乱、電子対生成)によっ て2次電子がNaI(TI)結晶物質を励起し、励起状態 が定常状態に戻る時、分子がシンチレーションと 呼ばれる閃光を発生する。

検出原理

ガンマ線がNaIシンチレーターに入射

- ➡Nalシンチレーター中でエネルギーを落とす
- ➡光電子増倍管で増幅しアナログ信号として出力

シリカエアリゲルによるPs生成

SiO2の鎖型構造

- ・低密度、均質、表面積が大きい。 →ポジトロニウム(Ps)の生成に適している
- ・陽電子が入射し、内部で減速した後、表面の電子とポジトロニウムを生成。

ortho-Ps寿命

• 過去の実験結果

Figure 4.19: Display of Ps formation assembly.

Figure 4.35: Time spectrum of three-photon annihilation events. The shaded area near 0 ns shows prompt annihilation of free electron and free positron. The line shows fitted result with the lifetime of 120.6 ± 2.0 ns.

120.6 ± 2.0 ns (窒素中)

(松本利広 博士論文 1997年)

QED

誤差/値= 2.24205E-10 電子磁気モーメントの理論計算のαのオーダー (α)^-5= 2.07204E-11 ポジトロニウムの5光子消滅過程は低次を除いて高次のみの値を得られる

 $(\alpha)^{-5} =$

 $(\alpha)^{-8} =$

2.07204E-11

ポジトロニウム原子のα^3を除いた場合

8.05815E-18

まとめ

ポジトロニウムの5光子消滅過程は低次を除いても 電子の異常磁気モーメントより1桁よい精度が得られる。 原子の波動関数を入れると8桁精度がよい。

データ取得回路概略(ADC編)

データ取得回路概略(TDC編)

BackToBack排除回路

ポジトロニウム生成部

カプトン製陽電子線源²²Na (日本アイソトープ協会 NA351) --直径20mm、厚み6mm、薄膜の厚さ7.5ミクロン

> プラスチックシンチレータ Saint Gobain製BC400 直径9mm、0.15mm厚

シリカエアロゲル 半径6mm半球 Na22

崩壊時間測定

Psの即時崩壊 ➡Ps生成タイミングとする(0 ns)

PMT+Nalの取り付け 0080108 PMT+Nal

鉛の拡大の効果

ヒット数とエネルギーで3光子崩壊によるBGを大幅に落とせる

データ取得回路概略(ADC編)

5光子崩壊事象選別条件

- (1)ヒット数 =5
- ②運動量和に対して

$$|S_{i=1}^{5}\vec{P}_{i}| \pm 90[keV/c]$$

③崩壊エネルギー

$$=m_{e^-}+m_{e^+}=1022[keV]$$
トータルエネルギーに対して

962[keV]£ $S_{i=1}^5 E_i$ £ 1082[keV]

(横軸)トータルエネルギーと(縦軸)運動量和