LHCとATLASの物理

山口大貴(東工大 D3)

高エネルギー春の学校 2017年5月19日

Text

はじめに

● はじめに

- ▶ 対象: 普通のM1
- ▶ 概要:
 - 学生目線で、どんな実験をしているか
 - 最新結果の一覧ではないので、ご容赦ください (最新結果の一覧は<u>こちら</u>を見てください)

内容

- ▶ 興味の対象
- LHC
- ▶ ATLASとその物理

▶ これから

暴粒子物理と標準模型

- ▶ 素粒子: 物質を構成する最小単位
-)標準模型:素粒子の振舞いを記述する理論体系
 - ▶ **クォーク&レプトン**:物質を構成
 - ▶ **ゲージ粒子**: 力を媒介
 - ▶ ヒッグス粒子: 質量起源
 - 2012年にATLAS&CMS実験で発見 (ノーベル賞へ)

多くの実験結果を精度良く説明

- 問題点: ダークマターやニュートリノ質量(振動)を説明できないなど…
 ⇒ 標準模型を超えた物理があるはず
- 標準模型の精密検証と、新しい物理(素粒子)の探索
 - ▶ LHC, Belle, T2K, KamLand-Zen, DeeMe, ANKOK, NEWAGE... など世界各地で様々な実験を行っている

N = ♂ × L 生成される数 生成確率(E) 試行回数(加速器)

エネルギーフロンティア

Large Hadron Collider

ヒッグス、新粒子探索

ルミノシティフロンティア

Super-KEKB

Bハドロン、稀崩壊事象

Large Hadron Collider

LHCで見たいもの

● 14 TeV ~10⁻¹² 秒後の宇宙

▶ 初期宇宙で なにが起きていたか?

<section-header>

● 多くの種類の粒子が、様々な方向へ

● 検出器を衝突点周辺に置いて、 衝突時に何が起きたかを調べる

▶ 出てきた粒子を隈なく捉えることが重要

A Toroidal LHC ApparatuS 検出器

LS1 to Run2開始

● ビームが出てるとき

Text

トリガーの話

● 全ての検出器の情報から、粒子の種類や、その運動量とエネルギーを再構成する

物理解析の話

● 今までの簡単なまとめ

- LHCの物理を見るための検出器
- データ取得
- 粒子の再構成

▶「イベント毎に、どんな粒子が出てきたのか分かる」状態

- これから実際にどのように解析をしていくのか
 - ▶ 「発見」の例: higgs $\rightarrow \gamma \gamma$
 - 「探索」の例: mono-jet解析 (時間ないので飛ばすかも...)

higgs $\rightarrow \gamma \gamma の例$

- 2つの光子をもつイベントを抽出
- 2つの光子で不変質量を計算

- $m^{2} = (|\mathbf{p}_{1}| + |\mathbf{p}_{2}|)^{2} (\mathbf{p}_{1} + \mathbf{p}_{2})^{2}$ m = (2| \mathbf{p}_{1} || \mathbf{p}_{2} | (1 - cos θ))^{1/2}
- 確かにピークがある
 ▶ 発見??

統計処理(考え方だけ)

7000

バックグラウンドからデータがどれだけ離れているか?

Events / 2 GeV Data 2011+2012 Sig+Bkg Fit (m_=126.5 GeV) 5000 Bkg (4th order polynomial) p-value: ATLAS Preliminary 4000 Bkg-onlyの仮定のもとで観測した数を観測する確率 3000 $\sqrt{s} = 7 \text{ TeV}, \ Ldt = 4.8 \text{ fb}^{-1}$ 2000 Significance: $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 13.0 \text{ fb}^{-1}$ 1000 逸脱具合を標準正規分布のシグマで表した数 Events-Fit 300 **Bkg-only** 200 At $m_{\gamma} \sim 126$ GeV, -100 -200 E データ p-value 130 120 140 [GeV] (データを観測する確率) = 10-9 Local p_0 SM H $\rightarrow \gamma \gamma$ expected p ATLAS Preliminary 10^{2} Observed p 10 Bkg-onlyでは観測した結果を説明できない 1σ 10 2σ → 仮説が間違ってる = Bkg-onlyではない 10 3σ → なにかある! 10^{-3} Data 2011 √s = 7 TeV 4σ 10⁻⁴ Obs. 2011 10⁻⁵ $Ldt = 4.8 \text{ fb}^{-1}$ 宣言: Exp. 2011 10⁻⁶ 35σ 3σ(10⁻³) ... "Evidence" Obs. 2012 Data 2012 √s = 8 TeV Exp. 2012 $5\sigma(10^{-7})$... "Discovery" $Ldt = 13.0 \text{ fb}^{-1}$ 6σ 120 125 130 150 115 135 140 145 110 6σ なので、「higgs $\rightarrow \gamma \gamma$ を発見」(global p-valueの話は省) m_H [GeV]

Text

ATLAS-CONF-2012-168

Selected diphoton sample

mono-jetの例

• 暗黒物質探索

- ▶ 陽子陽子が衝突
 → なにかある粒子Aが生成
 → WIMP(χ)が対生成
- WIMPは標準模型の粒子とほとんど相互作用しない → 検出器に信号を残さない(通り抜ける)
- どうやって探索するのか?
 - ▶ 通り抜ける →運動量保存則が成り立っていないようにみえる (ニュートリノも)
 - ▶ 運動量のバランスから、 missing ET (MET) or ET^{miss} (見えないものが持って行った横平面上のエネルギー) を計算することで探索可能

1つのジェットのみを含むようなイベントを抽出

- ●E^{Tmiss}分布を作成
 - → 標準模型の予想とデータを比較
 - ▶ 明らかな逸脱はなさそう…
- 結論は「標準模型からのずれはなさそう」だけ?
 →「信号事象がない」ということから
 「理論に制限をつけることができる」

1つのジェットのみを含むようなイベントを抽出

- ●E^{Tmiss}分布を作成
 - → 標準模型の予想とデータを比較
 - ▶ 明らかな逸脱はなさそう…
- 結論は「標準模型からのずれはなさそう」だけ?
 →「信号事象がない」ということから
 「理論に制限をつけることができる」

1つのジェットのみを含むようなイベントを抽出

- ●E^{™iss}分布を作成
 - → 標準模型の予想とデータを比較
 - ▶ 明らかな逸脱はなさそう…
- 結論は「標準模型からのずれはなさそう」だけ? →「信号事象がない」ということから 「理論に制限をつけることができる」

- S+Bでは観測した結果を説明できない
 → 仮説が間違ってる = S+Bではない
 → そんなSignalありえない
 - ≥ 2σ (95%)を基準に棄却 「95% Confidence Levelで…を棄却」

ATLASの成果 標準模型の検証

Standard Model Production Cross Section Measurements

Status: May 2017

標準模型の予測とデータがぴったしあっている!

いまのところ、新粒子発見の兆候はなし

これから

▶ 今M1だと、LS2をまたいでRun3→D卒業

▶ Run3に向けた準備 & 最新のデータを使った物理解析ができそう

High Luminosity-LHC

- ヒッグスの物理
 - ▶ 精密測定
 - ▶ ヒッグスの自己結合測定
 - ▶ レアな崩壊モード探索: μμ
 - 3000 fb⁻¹で5σ超えそう

● 新物理探索 … 超対称性粒子の探索の例

まとめ

- 世界最大の重心系エネルギーを実現するLHCを使ってATLAS実験を行っている
 - ▶ 素粒子標準模型の検証
 - ▶ 未発見の新しい物理/素粒子の探索
- 実際にどんなことをしているか?
 - ▶ トリガー、データ取得、再構成、 higgs $\rightarrow \gamma \gamma$ の例
- 現在、これ以外にもたくさんの解析が行なわれている
 - ▶ 興味がある方は<u>こちら</u>
- 将来、できることはたくさんある

▶ Run3の準備と解析、HL-LHCに向けたアップグレード、HL-LHCの物理解析、....

● もっと知りたいな…と思った方はいつでも聞いてください!

ご清聴ありがとうございました

Back Up

LHC

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Derived from CMS Detector Slice from CERN

z

- 電子、光子などは電磁シャワーを、ハドロン(バリオン、メソン)は ハドロン・シャワーを形成
 λは原子核相互作用長 (nucle
- 強い相互作用により、多重粒子生成

λ >> X₀

- 電磁シャワー長 << ハドロンシャワー長
 (通常、電磁カロリメータが内側にあり、ハドロンカロリメータが外側にある理由) 選べ(議論1min)
- 表から、 電磁に<u>鉛、ハドロンに鉄</u>の 組み合わせが標準
- 全エネルギーを評価するためには、シャワー 全体を覆う必要がある。およそ 10Aの深さが ないと、エネルギーを逃してしまう

λは原子核相互作用長 (nuclear interaction length) とも呼ぶ

物質	X ₀ (gcm ⁻²)	λ (gcm ⁻²)	密度 (gcm ⁻³)	X _o (cm)	λ(cm)
ヘリウム	94.3	65.1	0.125	754.4	520.8
カーボン	42.7	86.3	2.27	18.8	38.0
アルミニウム	24.0	106.4	2.70	8.9	39.4
鉄	13.8	131.9	7.87	1.75	16.8
鉛	6.4	194	11.4	0.56	17.0

放射長、吸収長、密度

データの話

- データ ... 各検出器のヒット情報の集合
 ▶ 生データ ... 毎秒500 MB → 年間100 PB
 シミュレーション
 - ▶ 信号事象用、バックグラウンド用、…
- 世界中の研究者がいつでもどこからでもアクセスできる
 - ▶ 世界各地のデータセンターに分散して保存
 - ▶ ユーザーはどこに何が保存されているか気にせずアクセスできる クラウドコンピューティング / グリッドコンピューティング

Parton distribution func.

Data-taking 2015/2016

- Record performance of the LHC in 2016:
 - 1680 hours of 13 TeV stable beams data-taking in 2016!
 - Peak instantaneous luminosity of 1.38 x 10³⁴ cm⁻² s⁻¹
 - Pile-up of up to 50 interactions per crossing
- Excellent Run-2 data-taking campaign for ATLAS:
 - 3.9 fb⁻¹ + 35.6 fb⁻¹ recorded in 2015 + 2016
 - In total 36.1 fb⁻¹ (i.e. 91.4%) good for SUSY searches!

21/03/17

Moritz Backes

https://indico.cern.ch/event/580623/

Trigger Performance Highlights

- ATLAS trigger and DAQ systems form the basis for a successful data-taking
- Major challenge in 2016: Maintain trigger ٠ performance in fierce luminosity & pile-up conditions
- Main physics triggers for SUSY searches: Generic E_{T.miss}, jet, lepton triggers

Data

60

Z→ ee MC

80

100

ATLAS Internal

Data 2016, vs = 13 TeV, 33.5 fb⁻¹

Text

Trigger Efficiency

1.2

0.8

0.6

0.4

0.2

20

40

Detector Performance Highlights

ATLAS SUSY Searches* - 95% CL Lower Limits May 2017

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb	-1] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{k}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{k}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{k}_{1}^{*} \rightarrow qqW^{\pm}\tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{k}_{1}^{*} \rightarrow qqW^{\pm}\tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{k}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{k}_{1}^{0}$ $GMSB$ ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ e \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 & 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet	 Yes 	20.3 36.1 3.2 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	4.8 7 8 8 8 8 8 8 8 900 GeV F ^{1/2} scale	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$m(\tilde{q})=m(\tilde{g})$ $m(\tilde{k}_{1}^{0})<200 \text{ GeV}, m(1^{st} \text{ gen.} \tilde{q})=m(2^{nd} \text{ gen.} \tilde{q})$ $m(\tilde{q})-m(\tilde{k}_{1}^{0})<5 \text{ GeV}$ $m(\tilde{k}_{1}^{0})<200 \text{ GeV}$ $m(\tilde{k}_{1}^{0})<200 \text{ GeV}, m(\tilde{\epsilon}^{+})=0.5(m(\tilde{k}_{1}^{0})+m(\tilde{g}))$ $m(\tilde{k}_{1}^{0})<400 \text{ GeV}$ $m(\tilde{k}_{1}^{0})<400 \text{ GeV}$ cr(NLSP)<0.1 mm $m(\tilde{k}_{1}^{0})<950 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu<0$ $m(\tilde{k}_{1}^{0})>680 \text{ GeV}, cr(NLSP)<0.1 \text{ mm}, \mu>0$ m(NLSP)>430 GeV $m(\tilde{G})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{q})=1.5 \text{ TeV}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3rd ger § med	$\overline{g}\overline{g}, \overline{g} \rightarrow bb\overline{\chi}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow tt\overline{\chi}_{1}^{0}$ $\overline{g}\overline{g}, \overline{g} \rightarrow bt\overline{\chi}_{1}^{+}$	0 0-1 e,μ 0-1 e,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	na na	1.92 TeV 1.97 TeV 1.37 TeV	m(\tilde{k}_1^0)<600 GeV m(\tilde{k}_1^0)<200 GeV m(\tilde{k}_1^0)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0$ $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{k}_1^{\pm}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{k}_1^{\pm}$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{k}_1^0$ or $t \tilde{k}_1^0$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{k}_1^0$ $\tilde{t}_1 \tilde{t}_1 (natural GMSB)$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + h$	0 2 e, μ (SS) 0 $2 e, \mu$ 0 $2 e, \mu$ 0 2 e, μ (Z) 3 e, μ (Z) 1 $2 e, \mu$	2 b 1 b 1-2 b 0-2 jets/1-2/ mono-jet 1 b 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	\$\vec{k}_1\$ 950 GeV \$\vec{k}_1\$ 275-700 GeV \$\vec{k}_1\$ 275-700 GeV \$\vec{l}_1\$ 200-720 GeV \$\vec{l}_1\$ 90-198 GeV \$\vec{l}_1\$ 90-323 GeV \$\vec{l}_1\$ 90-323 GeV \$\vec{l}_2\$ 150-600 GeV \$\vec{l}_2\$ 290-790 GeV \$\vec{l}_2\$ 320-880 GeV		$\begin{split} & m(\tilde{\ell}_{1}^{0}) {<} 420 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {<} 200 \ \text{GeV}, \ m(\tilde{\ell}_{1}^{+}) {=} \ m(\tilde{\ell}_{1}^{0}) {+} 100 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 2 \ m(\tilde{\ell}_{1}^{0}), \ m(\tilde{\ell}_{1}^{0}) {=} 55 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 1 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 150 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 0 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 0 \ \text{GeV} \\ & m(\tilde{\ell}_{1}^{0}) {=} 0 \ \text{GeV} \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{c} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell} \nu(\ell \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{\bar{\nu}}, \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \bar{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau} \tau(\nu \bar{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\bar{\nu} \nu), \ell \bar{\nu} \tilde{\ell}_{L} \ell(\bar{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{Z} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma \gamma \\ \tilde{\chi}_{2}^{0} \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R} \ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \end{array} $	$\begin{array}{c} 2 e, \mu \\ 2 e, \mu \\ 2 \tau \\ 3 e, \mu \\ 2 \cdot 3 e, \mu \\ e, \mu, \gamma \\ 4 e, \mu \\ \rightarrow \gamma \tilde{G} 1 e, \mu + \gamma \\ \rightarrow \gamma \tilde{G} 2 \gamma \end{array}$	0 0 0-2 jets 0-2 <i>b</i> 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\tilde{\ell}$ 90-440 GeV \hat{x}_{1}^{\pm} 710 GeV \hat{x}_{1}^{\pm} 760 GeV $\hat{x}_{1}^{\pm}, \hat{x}_{2}^{\pm}$ 1.16 ° $\hat{x}_{1}^{\pm}, \hat{x}_{2}^{\pm}$ 580 GeV $\hat{x}_{1}^{\pm}, \hat{x}_{2}^{\pm}$ 580 GeV $\hat{x}_{2,3}^{\pm}$ 635 GeV \hat{w} 115-370 GeV \hat{w} 590 GeV	ΤοV m(k ² [*] 1)=n m(k ² 2)=n	$\begin{array}{l} m(\tilde{k}_{1}^{0}) \!\!=\!\! 0 \\ m(\tilde{k}_{1}^{0}) \!\!=\!\! 0, m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{k}_{1}^{n}) \!\!+\! m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{0}) \!\!=\!\! 0, m(\tilde{\tau}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{k}_{1}^{n}) \!\!+\! m(\tilde{k}_{1}^{0})) \\ (\tilde{\ell}_{2}^{0}), m(\tilde{k}_{1}^{0}) \!\!=\!\! 0, m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{k}_{1}^{n}) \!\!+\! m(\tilde{k}_{1}^{0})) \\ m(\tilde{k}_{1}^{n}) \!\!=\!\! m(\tilde{k}_{2}^{n}), m(\tilde{k}_{1}^{n}) \!\!=\!\! 0, \tilde{\ell} \text{ decoupled} \\ m(\tilde{k}_{1}^{n}) \!\!=\!\! m(\tilde{k}_{2}^{n}), m(\tilde{k}_{1}^{n}) \!\!=\!\! 0, \tilde{\ell} \text{ decoupled} \\ (\tilde{\ell}_{3}^{n}), m(\tilde{k}_{1}^{n}) \!\!=\!\! 0, m(\tilde{\ell}, \tilde{\nu}) \!\!=\!\! 0.5(m(\tilde{k}_{2}^{n}) \!\!+\!\! m(\tilde{k}_{1}^{n})) \\ cr<1 mm \\ cr<1 mm \end{array}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{x}_{1}^{*}\tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{*} Direct $\tilde{x}_{1}^{*}\tilde{x}_{1}^{-}$ prod., long-lived \tilde{x}_{1}^{*} Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{x}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu$ GMSB, $\tilde{x}_{1}^{0} \rightarrow \gamma G$, long-lived \tilde{x}_{1}^{0} $\tilde{g}\tilde{g}, \tilde{x}_{1}^{0} \rightarrow eev/e\muv/\mu\muv$ GGM $\tilde{g}\tilde{g}, \tilde{x}_{1}^{0} \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk) 1-2 µ 2 γ displ. ee/eµ/µ displ. vtx + je	1 jet - 1-5 jets - - - - - μμ - ts -	Yes Yes - - Yes -	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\$\bar{x}_1^n\$ 430 GeV \$\bar{x}_1^n\$ 495 GeV \$\bar{x}\$ 850 GeV \$\bar{x}\$ 850 GeV \$\bar{x}\$ 537 GeV \$\bar{x}\$ 440 GeV \$\bar{x}\$ 1.0 TeV \$\bar{x}\$ 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} & m(\tilde{k}_1^*) - m(\tilde{k}_1^0) \sim 160 \; MeV, \; r(\tilde{k}_1^*) = 0.2 \; ns \\ & m(\tilde{k}_1^*) - m(\tilde{k}_1^0) \sim 160 \; MeV, \; r(\tilde{k}_1^*) < 15 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; 10 \; \mu s < r(\tilde{k}) < 1000 \; s \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; r > 10 \; ns \\ & 10 < tangl < 50 \\ & 1 < r(\tilde{k}_1^0) < 3 \; ns, \; SPS8 \; model \\ & 7 < cr(\tilde{k}_1^0) < 740 \; nm, \; m(\tilde{k}) = 1.3 \; TeV \\ & 6 < cr(\tilde{k}_1^0) < 480 \; nm, \; m(\tilde{k}) = 1.1 \; TeV \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow eev, e\mu v, \mu\mu v \\ \tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau v_e, e\tau v_\tau \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \bar{q} q \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow q \bar{q} q \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q \bar{q} q \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow q \bar{q} q \\ \tilde{g} \tilde{g}, \tilde{g} \rightarrow t \tilde{t}_1, \tilde{t}_1 \rightarrow bs \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b\ell \\ \end{array} $	$e\mu, e\tau, \mu\tau$ $2 e, \mu$ (SS) $4 e, \mu$ $3 e, \mu + \tau$ 0 4 $1 e, \mu 8$ $1 e, \mu 8$ $1 e, \mu 8$ $2 e, \mu$	- 0-3 b - 1-5 large-R je 8-10 jets/0-4 8-10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Ms - Ms - b - b -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	\$\vec{r}\$ \$\vec{r}\$ <t< td=""><td>1.9 TeV 1.45 TeV TeV 1.55 TeV 2.1 TeV 1.65 TeV 4-1.45 TeV</td><td>$\begin{split} \lambda_{111}' = & 0.11, \ \lambda_{132/133/233} = & 0.07 \\ m(\tilde{q}) = m(\tilde{g}), \ c\tau_{LSP} < 1 \ mm \\ m(\tilde{k}_{1}^{0}) > & 400 \ GeV, \ \lambda_{12k} \neq 0 \ (\tilde{k} = 1, 2) \\ m(\tilde{k}_{1}^{0}) > & 0.2 \ xm(\tilde{k}_{1}^{0}), \ \lambda_{133} \neq 0 \\ BR(r) = BR(b) = BR(c) = & 0\% \\ m(\tilde{k}_{1}^{0}) = & 800 \ GeV \\ m(\tilde{k}_{1}^{0}) = & 1 \ TeV, \ \lambda_{112} \neq 0 \\ m(\tilde{i}_{1}) = & 1 \ TeV, \ \lambda_{123} \neq 0 \\ BR(\tilde{i}_{1} \rightarrow be/\mu) > & 20\% \end{split}$</td><td>1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-084 ATLAS-CONF-2017-036</td></t<>	1.9 TeV 1.45 TeV TeV 1.55 TeV 2.1 TeV 1.65 TeV 4-1.45 TeV	$\begin{split} \lambda_{111}' = & 0.11, \ \lambda_{132/133/233} = & 0.07 \\ m(\tilde{q}) = m(\tilde{g}), \ c\tau_{LSP} < 1 \ mm \\ m(\tilde{k}_{1}^{0}) > & 400 \ GeV, \ \lambda_{12k} \neq 0 \ (\tilde{k} = 1, 2) \\ m(\tilde{k}_{1}^{0}) > & 0.2 \ xm(\tilde{k}_{1}^{0}), \ \lambda_{133} \neq 0 \\ BR(r) = BR(b) = BR(c) = & 0\% \\ m(\tilde{k}_{1}^{0}) = & 800 \ GeV \\ m(\tilde{k}_{1}^{0}) = & 1 \ TeV, \ \lambda_{112} \neq 0 \\ m(\tilde{i}_{1}) = & 1 \ TeV, \ \lambda_{123} \neq 0 \\ BR(\tilde{i}_{1} \rightarrow be/\mu) > & 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{t}_1^0$	0	2 c	Yes	20.3	₹ 510 GeV		m(\tilde{k}_1^0)<200 GeV	1501.01325
*Only a phen	Drily a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on 10 ⁻¹ 1 Mass scale [TeV]								

*0 phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

導入と統計の話

何をしたいか

– 前節では数を数えただけだが,バックグラウンドとシグナルを分離する特徴を使えば より効率がいい

例: バックグラウンドはexponential分布,シグナルは共鳴分布

そのために

- 検定統計量: バックグラウンドだけの場合に比べて,
 データにシグナルが含まれている時に,大きく異なる値もつように作られた値
 例1) 前節のイベント数(15...bg-like, 22...signal+bg-like)
 例2) BDT score (-1...bg-like, 1...signal+bg-like)
 - ▶ 今回は「バックグラウンドだけ」と「シグナル+バックグラウンド」2つの仮定の profile likelihoodの比を検定統計量として使う (+∞... bg-like, -∞... signal+bg-like)

Test statistic = X = -2 ln(Q), with Q =
$$\frac{\mathcal{L}(\mu_s = 1, \hat{\hat{\theta}}_{b(\mu_s=1)})}{\mathcal{L}(\mu_s = 0, \hat{\hat{\theta}}_{b(\mu_s=0)})}$$

D1 Seminar, Feb. 2016

10

Confidence level

- あるデータセットが, 「バックグラウンドのみ」と「シグナル+バックグラウンド」の どっちの仮説と一致するかを調べる
- それぞれ仮説から得られる検定統計量分布を求めて, 実験で得た検定統計量X_{観測}を得る確率を求める
- │ どっちの仮説と一致しているかを表す指標 Confidence level(信頼度)
 - 1-CL_b: バックグラウンドのみでX_{観測}を得る 確率(p-valueと同じ)。 観測値がsignal-likeだと小さな値をもつ
- CLs+b: シグナル+バックグラウンドでX_{観測}
 を得る確率。
 観測値がbg-likeだと小さな値をもつ

D1 Seminar, Feb. 2016