Belle II実験用 粒子識別装置ARICHの 宇宙線事象の解析

首都大学東京 高エネルギー実験研究室 修士1年 為近彩智

目次

イントロダクション •Belle II 実験 •ARICH検出器、光検出器HAPD 研究内容 ・研究の目的 ・解析の手順 ・使用したデータ •解析結果 ・まとめ

SuperKEKB加速器を用いて電子(7 GeV)と陽電子(4 GeV)を衝突させ B中間子対を生成し、崩壊過程をBelle II検出器で大量に観測する実験。

ARICH 後出器 Aerogel Ring Imaging CHerenkov counter

チェレンコフ光:荷電粒子が物質中を運動する時、荷電粒子の速度がその物質中の光速度 よりも速い場合に放出される光。

m:粒子質量、p:運動量、n:屈折率、 θ c:放射角

3.粒子を仮定した時に予測される放射角 (右の式)と比較。→粒子識別

HAPD Hybrid Avalanche Photo Detector

ARICHで用いる光検出器

サイズ: 73mm × 73mm

ピクセルサイズ: 4.9mm × 4.9mm

チャンネル数:144ch

ARICH検出器の現状

ARICHの宇宙線試験

2017/5/18

ARICHの宇宙線事象の解析 飛跡検出器が存在しない環境で、ARICHからの情報のみで 宇宙線µ粒子を用いて、放射角θcや検出光子数からARICHの性能を調べる

1.宇宙線データからリングに対応するイベントを目視で選択。 2.各イベントのリング状に見えたヒットを目視で選択。

1.宇宙線データからリングに対応するイベントを目視で選択。 2.各イベントのリング状に見えたヒットを目視で選択。

3. 発光点(Ax,Ay)と宇宙線の通過点(Cx,Cy)をフリーパラメータに設定 →各ヒットに対応した θ_i を計算

4. χ^2 が最小になるよう座標(Ax,Ay)と(Cx,Cy)とチェレンコフ光の放射角 θ_c をフィット。

1.宇宙線データからリングに対応するイベントを目視で選択。 2.各イベントのリング状に見えたヒットを目視で選択。

3. 発光点(Ax,Ay)と宇宙線の通過点(Cx,Cy)をフリーパラメータに設定 →各ヒットに対応した θ_i を計算

4. χ^2 が最小になるよう座標(Ax,Ay)と(Cx,Cy)とチェレンコフ光の放射角 θ_c をフィット。

解析に使用したデータ

データ収集日時	2016/11/17	2017/1/17
選んだイベント数 /全イベント数	42/1375	446/5609
使用した HAPDの数	11台	16台
HAPDの配置 シリカエアロゲル の位置 (49.8, 38.4)	$\sum_{k=0}^{80} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	cm = 1
HAPDの量子 効率の平均	33.9%	33.2%

フィットの実行結果の例

エアロゲル上の発光点 2016/11/17と2017/1/17のデータ

2017/5/18

チェレンコフ光放射角θcの分布

チェレンコフ光放射角θc残差の分布

チェレンコフ光放射角θcの分布

2017/5/18

春の学校

入射角と放射角θcの関係

計算値に比べてやや大きな値となった。目視によるバイアスが考えられる。 1つのポアソン分布として矛盾なし。→µ粒子1トラックの光子数が多い

まとめ

宇宙線(µ粒子)を用いたチェレンコフリングの観測とチェレンコフ光の放射角の 再構成に成功した。

計算値0.31radに比べ、 $\theta c = 0.27$ radと小さく再構成されたイベントが多い。 →放射角分布はtoyMCによる $\theta c = 0.31$ radシミュレーション結果と矛盾がない。

リングに相当する検出光子数を求めた結果14.6で、計算値11.8より多いことが わかった。

シリカエアロゲル

ニ酸化ケイ素主体の固体が微細な気泡を多量・均一に含んだもの。 サイズ:17cm×17cm

デュアルレイヤー方式

屈折率がn1=1.045とn2=1.055の二枚を使用し、検出光子数を減らさず、 角度分解能を減少させている。

宇宙線のエネルギーとθc

μ粒子のエネルギー [GeV]	β=P/E	放射角θ[rad]	µ粒子のエネルギー [GeV]	β=P/E	放射角θ[rad]
0.5	0.979795897	0.237114849	2.3	0.999054373	0.30687442
0.6	0.986013297	0.261935547	2.4	0.999131567	0.307118141
0.7	0.989743319	0.275642799	2.5	0.99919968	0.307333002
0.8	0.992156742	0.284116172	2.6	0.999260081	0.307523394
0.9	0.99380799	0.289751701	2.7	0.999313894	0.307692899
1.0	0.994987437	0.293701464	2.8	0.999362041	0.30784447
1.1	0.995859195	0.296582073	2.9	0.999405293	0.307980553
1.2	0.996521729	0.298749961	3.0	0.99944429	0.308103191
1.3	0.997037031	0.300423624	3.1	0.999479573	0.3082141
1.4	0.997445717	0.301743385	3.2	0.999511599	0.308314731
1.5	0.997775303	0.302802862	3.3	0.999540758	0.308406317
1.6	0.998044964	0.303666522	3.4	0.99956738	0.308489912
1.7	0.998268397	0.304379974	3.5	0.999591753	0.308566419
1.8	0.998455598	0.304976241	3.6	0.999614123	0.308636618
1.9	0.998613998	0.305479719	3.7	0.999634703	0.308701185
2.0	0.998749218	0.305908756	3.8	0.99965368	0.308760707
2.1	0.99886557	0.306277369	3.9	0.999671215	0.308815696
2.2	0.998966408	0.306596417	4.0	0.999687451	0.308866602

宇宙線のエネルギーとθc

μ粒子のエネルギー [GeV]	β=P/E	放射角θ[rad]	μ粒子のエネルギー [GeV]	β=P/E	放射角θ[rad]
0.5	0.98	0.24	2.3	1.00	0.31
0.6	0.99	0.26	2.4	1.00	0.31
0.7	0.99	0.28	2.5	1.00	0.31
0.8	0.99	0.28	2.6	1.00	0.31
0.9	0.99	0.29	2.7	1.00	0.31
1.0	0.99	0.29	2.8	1.00	0.31
1.1	1.00	0.30	2.9	1.00	0.31
1.2	1.00	0.30	3.0	1.00	0.31
1.3	1.00	0.30	3.1	1.00	0.31
1.4	1.00	0.30	3.2	1.00	0.31
1.5	1.00	0.30	3.3	1.00	0.31
1.6	1.00	0.30	3.4	1.00	0.31
1.7	1.00	0.30	3.5	1.00	0.31
1.8	1.00	0.30	3.6	1.00	0.31
1.9	1.00	0.31	3.7	1.00	0.31
2.0	1.00	0.31	3.8	1.00	0.31
2.1	1.00	0.31	3.9	1.00	0.31
2.2	1.00	0.31	4.0	1.00	0.31

エアロゲル上の発光点 2016/11/17と2017/1/17のデータ

2017/5/18

春の学校

2017/5/18

春の学校

入射角と検出光子数の関係

相関なし

春の学校

放射角のと検出光子数の関係

2017/5/18

相関なし

ベント毎の光子数

2016/11/17のデータ

2トラックイベントが多いように見える。 これはリングに含まれていないノイズやリングの中心点(μ粒子のガラスチェレンコフ光)を含ん でいるため光子数が多いと考えられる。

2017/5/18

春の学校

$$\theta = \cos^{-1} \frac{\boldsymbol{t} \cdot \boldsymbol{x}}{|\boldsymbol{t}||\boldsymbol{x}|} - \Delta \emptyset$$

$$\Delta \emptyset = \frac{\Delta \sin \emptyset}{\cos \emptyset} = \frac{1}{\cos \emptyset} (\sin \emptyset' - \sin \emptyset)$$
$$= \frac{1}{\cos \emptyset} \left(\frac{n(gel)}{n(air)} - 1 \right) \sin \emptyset$$
$$= \frac{|r|}{z} \left(\frac{n(gel)}{n(air)} - 1 \right) \sqrt{1 - \left(\frac{z}{|r|}\right)^2}$$

△0(岩田さんのスライドから)垂直の宇宙線のみの考慮

発光点の不定性

→ $\Delta \theta = \sqrt{0.00986221^2 + 0.00754706^2} = 0.0124186$ rad

2017/5/18

シンチレータ位置の測定

cm

2016/11/17の宇宙線データ

全1375イベント

チェレンコフ光のヒット点の2次元 ヒストグラム

ただしシンチレータの位置は不 確か

エアロゲルの中心値 (49.8, 38.4) シンチレータの中心値 (51.4, 40.6)

2017/5/18

	2016/11/17	2017/1/17
開始時刻	10:10	23:53
終了時刻	15:09	翌日15:36
計測時間	4時間59分	15時間43分
イベント数	1375	5609
計数率	0.0766/s	0.0991/s

引用:インターネット講座2004「宇宙から素粒子へ」

Belle II 実験の新物理の例

米永さんのスライド

b→sγ、b→dγ過程

Flavor Changing Neutral Current過程 ⇒世代は変わるが電荷は変わらない過程 標準模型ではループを介して発生

b→sr過程を含む崩壊例 b→dr過程を含む崩壊例 B⁰→ $\rho^0 r$ B⁰→<u>K^{*0}</u>r \downarrow $\pi^+\pi^ \downarrow$ K⁺ π^-

粒子識別能力の向上により、終状態にK[±]・π[±]を多く含む B⁰の崩壊過程を精密に測定することが可能となる

春の学校

フィット結果の例

春の学校

入射角と放射角θcの関係

正の相関が見える

2017/5/18

春の学校

HAPD**の**量子効率

$$\eta = \frac{hc}{q\lambda} * \frac{I}{P}$$

h:プランク定数 c:真空中の光速度 P:光出力 q:電子電荷 λ:波長[μm] I:電流

チェレンコフ光 発生する光子数

チェレンコフ光:透明な媒質を、その媒質中の光の伝播よりも速い荷電粒子が通過すると 発生する光

$$\frac{d^2 N}{dx d\lambda} = \frac{2\pi\alpha z^2}{\lambda^2} \left(1 - \frac{1}{\beta^2 n^2}\right)$$

α:微細構造定数 n:屈折率 λ:波長 z:入射粒子の電荷

HAPD ID

2017/5/18

使用した HAPD

位置番号	個体名	QE[%]	位置番号	個体名	QE[%]
4	KA1043	32.3	98	KA0203	32.2
5	ZJ6731	37.6	99	KA0667	26.9
6	KA0520	35.3	150	KA0903	32.8
7	KA0540	35.3	151	KA1096	32.6
46	KA1121	39.5	152	KA0785	36.5
47	ZJ5862	27.3	153	ZJ7888	30.9
48	KA1077	34.1	154	ZJ7464	34.6
49	KA0696	29.8	213	KA1094	32
50	KA0888	32.8	214	KA1024	35.6
94	KA0987	30.3	215	KA0466	27.7
95	KA0309	35.4			
96	KA0840	34	■2016/11/17 HAPDの量子効率平均:33.9% ■■2017/1/17 HAPDの量子効率平均:32.9%		
97	KA0447	31.2			

エアロゲルからはみ出す理由

2017/5/18

2017/5/18

春の学校

円、楕円に見える42イベントを選んで Fitし、エアロゲル上のチェレンコフ光 の発光点を調べた。

下方のシンチレータの位置は11/17に この位置であったかが確かでない。

誤差付き。 誤差を考慮してもエアロゲル外にFit されたものが9イベント。

2017/5/18

円、楕円に見える42イベントを選んで Fitし、エアロゲル上のチェレンコフ光 の発光点を調べた。

下方のシンチレータの位置は11/17に この位置であったかが確かでない。

誤差付き。 誤差を考慮してもエアロゲル外にFit されたものが9イベント。

2017/5/18

2017/5/18

春の学校

Minuit実行結果 エアロゲル外のイベント

Event463,492 At limitとなりFitができていない。 Fitlに使用する点を1点でも変更するとFitting結果が大きく変わる。 ノイズによって左右されていると考えられ、正しいFittingが困難。

選んだリングと選んだ点 Fitの結果

チェレンコフ光のリング

5ヒット以上のヒット点があるイベントの全1374イベントを1イベントずつ表示し、円が見えているものを探した。 その中から円の中心付近にヒット点が見えているものを選んだ。

チェレンコフ光のリング(座標)

55

チェレンコフ光のリング(結果)

チェレンコフ光のリング(座標)

チェレンコフ光のリング(結果)

チェレンコフ光のリング(座標)

チェレンコフ光のリング(結果)

チェレンコフ光のリング(座標)

チェレンコフ光のリング(結果)

チェレンコフ光のリング(座標)

1 (48.1686, 35.3819) 2 (60.5992, 27.8104) 3 (60.8311, 28.4933) 4 (58.8606, 26.3843) 5 (50.1241, 26.2025) 6 (48.1958, 30.5625) 7 (48.7741, 28.5408) 8 (58.7137, 35.7675) 9 (57.1563, 37.1803) 10 (56.4489, 37.3211) 11 (52.1391, 37.0752) 12 (53.2706, 37.2179) 13 (52.5632, 37.3586) 14 (53.6946, 37.5012) 円の中心点(初期値)

Cx=54.7725 Cy=33.1341

チェレンコフ光のリング(結果)

選んでいないイベントの例

