μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

奈良女子大学 人間文化研究科 物理科学専攻 1回生 高エネルギー物理学研究室

皆吉遥 市川真有 永松えりな

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

μ粒子の崩壊

★本実験では、シンチレーター内で静止したµ粒子を用いて、その寿命(τ)と、崩壊した際に生成される電子のエネルギー分布を測定した。

μ粒子の寿命の測定方法

ある時間tに存在する粒子の個数dN $dN = -\lambda N(t)dt$ 積分して整理すると $N(t) = N_0 exp^{-\lambda t}$ $N(t) = N_0 exp^{-\frac{t}{\tau}}$ 単位時間あたりの崩壊数 $\frac{dN}{dt} = \frac{No}{\tau} exp(-\frac{t}{\tau})$

N₀個すべての粒子の生 存時間を足しあげたものL $L = \int_0^\infty t N(t) \lambda dt$ $=\int_{0}^{\infty}tN(t)\lambda dt$ $=\left[-\frac{1}{\lambda}N_0e^{-\lambda t}\right]_0^\infty$ $=\frac{N_0}{\lambda}$ $\tau = \frac{L}{N_0} = \frac{1}{\lambda}$

★この実験式を用いて寿命**て**を求める。

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

ライトガイド

プラスチック

シンチレーター

光電子増倍管

寿命測定の手順 ①µ粒子がメインシンチレータ内で止まったイベントを選ぶ

②µ粒子がメインシンチレーターに入った瞬間のµ粒子がつくるパルス を測定

9

③静止したµ粒子が崩壊して、内部で生成された電子がつくるパルスを 測定

★トリガーカウンター T1: µ粒子が入ってきたイベントがわかる

入射したµ粒子のうち、静止したものは全体の1%であった 静止したµ粒子の数は一日当たり約8000個であった

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

★単位[TDCcount]。時間に変換するためにTDCの時間較正を行う

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

★実験結果と世界平均を比較

Journal of Physics G Nuclear and Particle Physics 2010によると、 文献値は

$$\tau_{PDG} = 2.197034 \pm 0.000021 [\mu s]$$

本実験の実験値

$\tau = 2.202 \pm 0.007 [\mu s]$

なのでPDGの値と誤差(0.3%)の範囲内で一致している

Fit範囲と寿命の関係

寿命の理論式
$$\frac{dN_{iik}}{dt} = \frac{N_0}{\tau} \exp(-\frac{t}{\tau})$$
($\tau =$ 平均寿命)

Fitした式
$$f(t) = p_o \exp\left(-\frac{t}{p_1}\right)$$

p1の値はfit範囲に 依存しないはず

TDCのカウント数が 100~1900の範囲で 200カウントずつのブロック に分けてfitを確認

もくじ

μ粒子の寿命及び 生成電子のエネルギースペクトラムの測定

1.µ粒子の寿命測定 原理 セットアップ 結果 考察

2.生成電子のエネルギースペクトラム測定

イベント選定

★ベトーカウンター :メインシンチレーターから飛び出した電子を観測する

22

23

★エネルギースケールを較正するために、貫通したµ粒子のシグナルを用いた。それによると、 2300chあたりが53MeVに相当する。

★電子の最大エネルギーはµ粒子の質量エネルギーの1/2(=52MeV)となる。

★測定したエネルギー分布は理論から予想される分布と大きく異なっている。

★原因として電子の全エネルギーをシンチレーターが検出できていないと思われる。原因究明のためにGeant4によるシミュレーションを始めた。

Geant4による1イベントのシミュレーション

打ち込むµ粒子にランダムな入射位置&角度の情報を追加した際のシミュレーション

まとめ

本実験で得られたµ粒子の寿命は2.202±0.007µsで
 文献値と誤差の範囲内で一致した。

測定した生成電子のエネルギースペクトラムは理論から
 予想されるエネルギー分布と大きく違っていた。

原因は、プラスチックシンチレーター内で電子が制動 放射を起こし、そこで生成された光子がシンチレー ター外に逃げていくためと予想される。シミュレーショ ンプログラム(GEANT4)を使って検討中。

ご清聴ありがとうございました

µ粒子の寿命の理論式

$$\Gamma = \tau_{\mu}^{-1} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F(x) (1 + \frac{3}{5} \frac{m_{\mu}}{M_w^2}) [1 + \delta_{E_W} (高次の補正項)]$$

静止µ粒子崩壊時の電子のエネルギー分布
$$\frac{dN}{dE} = \frac{d\Gamma}{dE} = \left(\frac{G_F}{\sqrt{2}}\right)^4 \frac{m_{\mu}^2 E^2}{2h(4\pi)^3} \left(1 - \frac{4E}{3m_{\mu}c^3}\right) \qquad \dots (*)$$

シンチレーションカウンター

本実験で使用した各CHのHV(V)

カウンター	СН	HV(V)	カウンター	СН	HV(V)
S1	1	2050	V3	7	1870
S2	2	2050	V4	8	2440
T1	3	2250	V5	9	2400
T2	4	1770	V6	10	2030
V1	5	1970	V7	11	2210
V2	6	1660	V8	12	2025

セットアップの全体図

µ粒子の寿命測定

測定で得た生データについて

例.~	イベ	シト数	数10[٨			ጣር	24 0	20	Т1	то	\/4		៰᠊ᡘ	小市				
10		実行	したイ	ベント	数	~		(e) 		, 1	52,	••,	12,	, v 1	~ v	0 0,				
-1	1	1142	917	817	264	0	0	0	0	0	0	0	0	0	0	0	0	4263	11	4263
-1	2	1594	1112	1237	85	0	0	0	0	0	0	0	0	0	0	0	0	4262	12	4263
-1	3	828	735	756	86	0	0	0	0	0	0	0	0	0	0	0	0	4259	11	4259
-1	4	623	804	922	86	0	0	0	0	0	0	0	0	0	0	0	0	4259	11	4259
-1	5	1842	1694	747	352	0	0	0	0	0	0	0	0	0	0	0	0	4261	12	4262
-1	6	2017	982	765	378	0	0	0	0	0	0	0	0	0	0	0	0	4259	11	4258
-1	7	594	416	971	87	0	0	0	0	0	0	0	0	0	0	0	0	4262	4263	4263
-1	8	1105	1521	699	87	0	0	0	0	0	0	0	0	0	0	0	0	4260	11	4260
-1	9	918	962	1530	86	0	0	0	0	0	0	0	0	0	0	0	0	4264	11	4264
-1	10	593	991	645	381	0	0	0	0	0	0	0	0	0	0	0	Ø	4422	4422	4422

/ イベント数 ADC(µ)のS1,S2,T1,T2の値

TDCのS1,S2,stop信号の値

イベント選定について

µ粒子がメインシンチレーター内で崩壊し、電子を放出する ⇒ADC(e)で取得したS1の値が一定値以上のイベント

★120以上のときカウンターが鳴っているとみなした

TDCの時間較正

TDC時間較正

delay[ns]	0	10	20	30	100
TDCのカウント数	0.196	1.867	3.909	5.975	19.798
delay[ns]	200	225	300	500	560
TDCのカウント数	40.528	45.097	61.378	100.097	111.835
delay[ns]	800	1000	1500	2000	2500
TDCのカウント数	159.985	199.947	300.934	400.617	501.403
delay[ns]	3000	3500	3600	3900	

電子の エネルギースペクトラム

収集した全イベント数 8594212 イベントのうち、 選定条件1~3を満たしたイベント数は95101イベントであった。

割合は、

$$\frac{95101}{8594212} \times 100 = 1.11(\%)$$

である。

ADCのエネルギー較正

電子のエネルギースペクトラムを測定しているADCについての エネルギー較正を行う

↓そのために

「µ粒子が崩壊せずにメインシンチレーターを通過したイベント」 を用いて測定を行う

なぜなら・・・ メインシンチレーターを垂直に貫通したµ粒子のエネルギー損失 は、計算から求めることができるから!

イベント選別について

3. 放出された電子がメインシンチレーター内にとどまっている ⇒ベトーカウンターがある一定値以下(=鳴っていない)イベント

43

h1

10.03

1.317

140

各CHのペデスタルの値

ADC(µ)		ADC(e)					
S1	109	S1	58	V1	55	V5	65
S2	98	S2	63	V2	63	V6	64
T1	89	T1	56	V3	57	V7	66
T2	85	T2	60	V4	63	V8	80

4,100,100イベント 横軸:ADCのCH数 縦軸:エントリー数(対数表示) ADC(µ)で取ったデータ

S1

S2

4,100,100イベント 横軸:ADCのCH数 縦軸:エントリー数(対数表示) ADC(µ)で取ったデータ

T1

T2

4,100,100イベント ADC(e)で取ったデータ

4,100,100イベント ADC(e)で取ったデータ

4,100,100イベント ADC(e)で取ったデータ

各カウンターの選定条件の具体的な値

V2

V3

V4

V6

V7

T1	Т2	V1	V2	V3
120	30	30	30	50
V4	V5	V6	V7	V8
50	50	130	50	50

★この値を下回るイベントを選定した

V8

GEANT4

シミュレーションの設定

1. 検出器の設定

左の図のようにx軸、 y軸、z軸を設定し、 各辺の長さも設定

2. 入射粒子の位置設定

3.入射粒子の 進行方向の設定

θ: cos²θに従う分布
↑計算で求めると飛来するµ粒子の個数はcos²θ
に従う
Φ:0°~360°の間での
一様分布

検出器の真上の高さ3cmのx-z 平面で一様乱数を発生させ、 入射粒子の位置を設定した。

58c

検出器の設定

強度J(θ)

 ・・・単位面積、単位時間、単位立体角当たりの 粒子の個数

```
µ粒子の強度J(θ)は、
J(θ)=J(0) cos<sup>2</sup>θ
と表される
```

J(0)=0.83×10⁻²(個/cm²・sec・sr) ⇒鉛直方向からくるµ粒子の強度

µ粒子の個数J(θ)は cos²θ に比例する

