

Makoto Tabata^{1,2}, Yoshikiyo Hatakeyama², Ichiro Adachi³, Hideyuki Kawai², Masato Kubo², Takeshi Sato²

¹ Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan, ² Chiba University, Chiba, Japan, ³ High Energy Accelerator Research Organization (KEK), Tsukuba, Japan

Introduction

• Silica aerogel as a Cherenkov radiator

Unique refractive index (can be adjusted)

- n=1.0026-1.11 (conventional production method)
- n=1.05-1.26 (new production method)

cf. air (gas) : n=1.0003, water (liquid) : n=1.33
New aerogel production technique

Pin-drying method

- High refractive index \rightarrow New PID window
- Highly transparent \rightarrow Ring imaging detector

• Hydrophobic \rightarrow Maintenance free

Belle II experiment at SuperKEKB (super *B* factory)
New PID detector for the forward end-cap

Aerogel based proximity ring imaging
Cherenkov (A-RICH) counter *K*/π ID capability > 4σ at 4 GeV/c

Dual-refractive-index focusing aerogel radiator

3.5 m² x 2 cm x two layers
Upstream : *n*=1.05 (conventional)
Downstream : *n*=1.06 (pin-drying)
Requirement : refractive index ununiformity < 4% ↔ density (ρ) ununiformity, *n*=1+k ρ (k: constant)

New Aerogel Production Technique – Pin-drying Method –

Production process 1. Wet-gel synthesis & aging 2. Pin-drying

- Enclosing the wet-gel in a semi-sealed container
- Solvent evaporation from the wet-gel
- Shrinking the wet-gel and increasing in density (several weeks)
- Hydrophobic treatment
 CO₂ supercritical drying

Measurement 1 (Refractive Index Uniformity)

- Laser Fraunhofer Method –
- Using blue-violet semiconductor laser (405 nm)
- Measurement of the minimum angle of deviation
- Refractive index can be measured at the corner of aerogel tiles

Measurement 3 (Density Uniformity)

- X-ray Absorption Technique -
- Exponential attenuation law: $I/I_0 = \exp(-\mu_m x)$, $x = \rho t$ (mass thickness)
- I/I_0 : X-ray transmittance, μ_m : X-ray mass-absorption coefficient, t : aerogel thickness
- X-ray fluorescent analysis (XRF) for mass-absorption coefficient
 - Using XRF instrument ZSX (Rigaku)

	Silicon	Oxygen	Carbon	Aerogel
lass absorption coefficient @7.95 keV [cm ² /g]	64.65	11.31	4.44	35.2

Measurement 2 (Cherenkov Angle Uniformity) – Beam Test –

• Using prototype of the Belle II A-RICH counter

• 20 cm distance between the upstream surface of aerogels and the photodetection plane (proximity RICH)

•At the KEK Fuji test beam line

• 2 GeV/c electron beams

•The position of incident beams was recorded with two MWPCs

• Point by point measurement (3 x 3 mm²)

144ch HAPD

2 x 3 array

- Scintillation counter
- Thickness measurement
 - Using measuring microscope UMM200 (Tsugami) (1 µm resolution)
 - Cutting aerogel along the X-ray scan line with a water jet cutter

Measuring microscope

0.21	 -
0.21	

Beam tracking : MWPC (at upstream and downstream of the light-shielded box)

0.34

Summary

Aeroge

To investigate the inside-uniformity of refractive index of aerogel tiles, we used three methods.
We observed an increase in refractive index at the edge of the pin-dried aerogel.
Further studies for improving the tile uniformity in the pin-drying process are ongoing.

References

M. Tabata, et al., Nucl. Instr. and Meth. A 623 (2010) 339.
K. Hara, et al., 2010 IEEE Nucl. Sci. Symp. Conf. Rec. p.415.
S. Korpar, talk in this symposium, N26-6.