Development of Large Area Silica Aerogel IEEE Nuclear Science Symposium Oct. 29–Nov. 3, 2012, Anaheim **Used as RICH Radiator for the Belle II Experiment** FACULTY OF SCIENCE

Makoto Tabata^{1,2}, Ichiro Adachi³, Yoshikiyo Hatakeyama⁴, Hideyuki Kawai², Takeshi Morita², Keiko Nishikawa², Takayuki Sumiyoshi⁵, and Belle II A-RICH Group

¹Japan Aerospace Exploration Agency (JAXA), Sagamihara, Japan, ²Chiba University, Chiba, Japan, ³High Energy Accelerator Research Organization (KEK), Tsukuba, Japan, ⁴Nihon University, Setagaya, Japan, ⁵Tokyo Metropolitan University, Hachioji, Japan

Introduction

• **Belle II experiment at SuperKEKB (super B factory)** • A probe of new physics

• Flavor physics and CP violation measurements Upgraded particle identification (PID) detector (under development) for the forward end-cap

 Aerogel-based proximity-focusing ring-imaging herenkov (A-RICH) counter

• Expansion gap: 20 cm (radiator to photo-detector) • Our goal: K/π ID capability more than 4σ at 4 GeV/c

Silica aerogel as Cherenkov radiator

• Tunable refractive index n

- n = 1.003 1.11 (our conventional production method)
- n = 1.05 1.26 (novel pin-drying production method)
- Long transmission length
- Hydrophobic \rightarrow Maintenance free
- Relation between n & density ρ : $n-1 = k\rho$ (k: constant)
- Focusing aerogel radiator with dual refractive index
 - Dual layer: n = 1.045 & 1.055 (up & downstream)
 - \rightarrow Focus Cherenkov photons on photo-detectors

A-RICH Detector Configuration

• A-RICH counter components

- Radiator
- Photo-detector
- Read-out electronics
- K/π identification concept \rightarrow Measure Cherenkov angle ϑ_{ch}
- $\vartheta_{ch}(\pi) \vartheta_{ch}(K) = 21.6 \text{ mrad}$
- at n = 1.055 and p = 4 GeV/c
- Basic performance in a beam test
- Angular resolution: ~14 mrad
- # of detected photons: 10–15
- K/ π identification capability: 5–6 σ

Aerogel Radiator Tiling Scheme

- Large area: 3.5 m²
- Two-layer configuration: 2 cm thick each
- Wedge shape tiles

 $18 \times 18 \times 2$ cm³ tile preparation Cut out with a water jet cutter

- Total number of tiles: 248
- Refractive index combination • Primary
 - n = 1.045 (conventional) + 1.055 (pin-drying)
 - Backup
 - n = 1.045 (conventional) + 1.055 (conventional)

New Aerogel Production Technique – Pin-drying Method –

- Production procedure
 - A. Our conventional method
 - 1. Wet gel synthesis & aging
 - 2. Hydrophobic treatment
 - 3. Rinse in alcohol
 - 4. CO, supercritical drying
- **Pin-drying process** After Before Wet gel Add pin-drying process (the other procedures **Pinhole vent** same as the conventional

1.14 m

method)

B. Pin-drying method

- Aerogel's refractive index can be adjusted in
 - Wet gel synthesis process (recipe of chemicals for sol-gel step)
 - Pin-drying process (monitor wet gel's weight to control density)

(Enclose a wet gel in a semi-sealed container with pinholes)

Large Tile Production and Optical Performance

- Conventional method
 - Final dimensions: 18 × 18 × 2 cm³ • 3 batch (84 tiles) trial production \rightarrow Crack-free yield: 96%
- Key: Slow pressure ramp up/down in the supercritical drying \rightarrow Reasonable transparency Ready for mass production • Pin-drying method
 - Trial dimensions: 17 × 17 × 2 cm³ • First crack-free sample (obtained) • Excellent transparency

Tile Density Uniformity Measurements

- Measurement concept
 - \rightarrow Exponential attenuation law of X-rays in materials: $|/|_{0} = \exp(-\mu_{m}x)$ $x = \rho t$: Mass thickness, ρ : Aerogel density

 I/I_0 : X-ray transmittance, μ_m : X-ray mass-absorption coefficient, t: Aerogel thickness • Measurement items

• X-ray fluorescent (XRF) analysis for mass-absorption coefficient X-ray absorption measurement for X-ray transmittance Thickness mapping using a measuring microscope • Requirements: Highly transparent and uniform tiles, $\delta(n-1)/(n-1) < 4\%$

(all Cherenkov photons pass through the downstream layer)

 Pin-drying aerogels are transparent, but their uniformity needs to be improved

Summary

• The A-RICH counter is under construction as PID detector in the forward end-cap under the Belle detector upgrade program.

• We have studied large area silica aerogel as Cherenkov radiator: Large tile production, optical measurements, and tile uniformity evaluation for both the conventional and pin-drying production method.

• Further studies to evaluate the performance of the A-RICH counter are ongoing.

References

- (Belle II) T. Abe, et al., Belle II Technical Design Report, KEK Report 2010-1, 2010. • (Conventional method) M. Tabata, et al., Nucl. Instr. and Meth. A 668 (2012) 64.
- (Pin-drying method) M. Tabata, et al., Physics Procedia 37 (2012) 642.
- (Uniformity measurements) M. Tabata, et al., IEEE Trans. Nucl. Sci. 59 (2012) 2506.
- (Beam test) K. Hara, et al., 2010 IEEE Nucl. Sci. Symp. Conf. Rec. p.415.
- (HAPD) S. Iwata, et al., Talk in this symposium, N17-6.
- (ASIC) A. Seljak, et al., Poster in this symposium, N14-45.