

Progress in Development of Silica Aerogel for Particle and Nuclear Physics Experiments at J-PARC

Makoto Tabata, Hideyuki Kawai

Chiba University, Japan

The 2nd International Symposium on Science at J-PARC Unlocking the Mysteries of Life, Matter and the Universe

July 12–15, 2014 Tsukuba, Japan

P-404

Highlights

We are developing silica aerogels for use in particle and nuclear physics experiments at J-PARC.
Modernized conventional method allows us to produce highly transparent aerogels at n = 1.03–1.05.
Pin-drying method enables us to generate ultrahigh-refractive-index aerogels up to n = 1.26.

References

• M. Tabata et al., Nucl. Instrum. Methods A 623 (2010) 339.

- M. Tabata et al., Nucl. Instrum. Methods A 668 (2012) 64.
- M. Tabata et al., Physics Procedia 37 (2012) 642.

Introduction

• Silica aerogel

- Tunable refractive index, n (determined by silica–air volume ratio)
 - n = 1.003–1.11 (by our conventional KEK method)
 - n = 1.05–1.26 (by novel pin-drying method)
 - \rightarrow density, $\rho = 0.01 1.0 \text{ g/cm}^3$

Our Conventional (KEK) Production Method

- KEK method: our standard method for producing hydrophobic aerogels
 - Developed for producing aerogels with n = 1.01 1.03 in 1990s
 - For use in the aerogel Cherenkov counters (ACCs) of Belle experiment at the KEKB collider
- Using ethanol or methanol as solvent in the wet-gel synthesis
 Down to n = 1.003 (for use as cosmic dust intact capture medium)
 Modernized conventional method

- Long transmission length, Λ_{T}
 - e.g., $\Lambda_{T} = 40$ mm at n = 1.05 ($\lambda = 400$ nm)
- Hydrophobic material (by our production method)
 Suppressing age-related degradation caused by moisture absorption
 Large volume, V

• V_{max} = 18 × 18 × 2 cm³ (n ~ 1.05), 15 × 15 × 3 cm³ (n ~ 1.03)
• To be used in several particle and nuclear physics experiments at J-PARC

• As a Cherenkov radiator (particle identification)

n = 1.009

• Threshold Cherenkov counters

• e.g., E03 (n = 1.12), E07 (n ~ 1.17), E14 (KOTO, n = 1.03), E36 (TREK, n = 1.08), E42 (n = 1.05)

Ring imaging Cherenkov counter
e.g., E50 (n = 1.03–1.05)

As an ultra-cold muon source (muonium production target)

• E34 (muon g–2/EDM, $\rho = 0.03$ g/cm³, n = 1.008)

Nanostructure of silica aerogel n = 1.003

- Developed for producing aerogels with n = 1.045–1.06 in 2000s
 For use in the aerogel ring imaging Cherenkov (A-RICH) detector of Belle II experiment scheduled at the SuperKEKB collider
 Using N,N-dimethylformamide (DMF) or mixture of DMF and methanol
 Up to n = 1.11
- Production procedure (~ 1 month)

 Wet-gel synthesis (molding)
 Aging and mold detachment
 Hydrophobic treatment
 Solvent replacement (using ethanol)
 Supercritical drying with an autoclave (using carbon dioxide or ethanol)

Scanning electron microscope image

Pin-drying Method

Dropped water

- Recently developed for producing aerogels with ultrahigh refractive index (n > 1.10)
- Production procedure
 - 1. Wet-gel synthesis
 - 2. Aging and mold detachment
 ← 3. Pin-drying process
 - 4. Hydrophobic treatment5. Solvent replacement6. Supercritical drying

1. **N**

1.15

Refractive index

Before hydrophobic treatment, to increase silica density, the wet gel is shrunk by partial drying (solvent evaporation) in a semi-sealed container punctured with pin holes to suppress cracking the wet gel.
More transparent aerogels can be obtained after supercritical drying. • Using the modernized conventional method: $\Lambda_{T} = 40-70 \text{ mm}$ at n = 1.03-1.05• Using the pin-drying method: $\Lambda_{T} = 40-60 \text{ mm}$ at n = 1.05-1.075 $\Lambda_{T} > 20 \text{ mm}$ at n = 1.075-1.26

1.00

1.05

n = 1.06, thickness = 1 cm

1.20

1.25

1.30

Classical aerogel $\Lambda_{\rm T} = 14$ mm

Pin-dried aerogel here! $\Lambda_{\rm T}$ = 53 mm