4th International Conference on Technology and Instrumentation in Particle Physics (TIPP 2017) May 21–26, 2017, Beijing, China

Assembly of a Silica Aerogel Radiator Module for the Belle II ARICH System

Makoto Tabata (Chiba Univ.)

makoto@hepburn.s.chiba-u.ac.jp On behalf of the Belle II ARICH Group

Outline

Introduction

- ARICH PID system in the Belle II detector
- Requirements for silica aerogel radiator

Mass Production of Silica Aerogel Tiles

- Crack-free yield
- Optical characterization

Assembly of an Aerogel Radiator Module

- Water jet machining
- Aerogel installation

Introduction

ARICH Counter in the Belle II Detector

Super-B factory experiment, Belle II at KEK, Japan

Detector upgrade in progress [Physics run from 2018]

Forward endcap PID subsystem, ARICH

Upgrade

 Aerogel-based proximity focusing Ring Imaging CHerenkov counter [ARICH]

Threshold-type aerogel Cherenkov counter [ACC] in the Belle

Design objective

π/K separation
 capability exceeding
 4σ at 4 GeV/c

Presentation refs. / T. Konno et al. [ARICH general, oral]; K. Ogawa et al. [HAPD, poster]; M. Yonenaga et al. [Slow control, poster].

4/20

Requirements for Aerogel Radiator

Double-layer focusing radiator scheme

- 20-cm expansion distance
- High Cherenkov angle resolution and high photon yield
- $n_{\text{upstream}} = 1.045 [2 \text{ cm thick}] \& n_{\text{downstream}} = 1.055 [2 \text{ cm thick}]$
- Transmission length $\Lambda_{T} \sim 40 \text{ mm}$ at 400-nm wavelength

• Large radiator coverage: 3.3 m² [cylindrical]

- Minimum tile boundaries
- 124-segments tiling scheme [248 tiles]
- Fan-shaped tiles trimmed from crack-free 18 × 18 cm² tiles

Hydrophobic characteristics

- Water jet machining [waterproof]
- Long-term stability

Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 766 (2014) 212.

Aerogel Tiling Scheme

Aerogel support structure

- 2.2 m dia. cylindrical module
- 3.3 m² [130 L]
- o 4 concentric rings
 → 4 types of aerogel shapes
- 124 aluminum cells
- 248 fan-shaped aerogel tiles

Silica Aerogel

Colloidal foam of nanoscale SiO₂ particles

- Transparent
- Tunable refractive index [i.e., bulk density]
 n = 1.003–1.26 Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 623 (2010) 339.
 - Density determined by silica–air volume ratio

Basic production procedure

- o Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 668 (2012) 64.
- 1. Wet gel synthesis by the sol-gel method
- 2. Solvent exchange & Surface modification
- 3. Supercritical CO₂ drying

Mass Production of Silica Aerogel Tiles

Mass Production of Aerogel Tiles

 Prior to mass production, large-area [18 × 18 × 2 cm³] tiles were successfully developed in good crack-free yield [~80%].

9/20

 Collaboration among KEK, Chiba Univ., Japan Fine Ceramics Center [JFCC], and Panasonic Corporation

- Technology transfer from Chiba U. and Panasonic to JFCC
- o Journal ref. / M. Tabata et al., J. Supercrit. Fluids 110 (2016) 183.

Aerogel mass production was begun in Sep. 2013 and completed in May 2014 at JFCC.

- o 16 lots / 448 tiles
- Delivered to KEK for quality check as soon as production lots became available

Yield of Tiles without Damages

• The tile yield was 77%, obtaining 344 usable tiles.

- 448 tiles manufactured
- 248 mandatory and 96 [39%] spare tiles obtained

Tile damage classification

- Physical [mechanical] damages: Tile cracking, chipping, etc.
- Chemical [optical] damages: Milky tile due to a sol–gel error

First aerogel tile

Chemical damage 27 tiles Physical 6% damage 77 tiles 17% Usable 344 tiles 77%

10/20

Refractive Index

• The deviations from the target refractive indices were within our expectation.

n [target] = 1.045 ± 0.002 [up] & 1.055 ± 0.002 [down]

Transmission Length

• The transparency was enough to meet our requirements.

 $_{\circ}$ Λ_{T} [target] > 40 mm [up] & 30 mm [down] at 400-nm wavelength

Assembly of an Aerogel Radiator Module

Water Jet Machining

 Square tiles were cut into fan shapes using a water-jet cutting device at a company.

Fan-shaped container

CAD drawing

Yield of Tiles without Volume Loss

The success rate of water jet machining was 90% without volume loss, yielding 248+ tiles.

283 tiles water-jet machined

Classification

- Grade S / No volume loss
 Grade A / Acceptable volume loss
 [≤ 1 cm², 0.4%]
- Grade B / Unusable

Grade A 94 tiles 33%

Grade B

28 tiles

10%

Grade S 161 tiles 57%

Combination of 2-layer Tiles

 Pairs of upstream and downstream tiles were determined to build a good-focusing-radiator framework.

16/20

Aerogel Installation Procedure

Aerogel Installation Procedure (cont'd) ^{18/20}

Aerogel Installation Completed

• Aerogel installation for 124 cells was completed in Dec. 2016.

Summary

 Large-area, hydrophobic silica aerogel tiles for use as Cherenkov radiators in the ARICH system were developed.

• The ARICH system will be used for identifying π and K mesons at the forward endcap of the Belle II spectrometer.

Mass production of highly transparent aerogel tiles with high refractive index was successful.

 The optical performance of mass-produced aerogel tiles was validated.

Assembly of the aerogel radiator module was completed.

• The aerogel module with the photo-detector module will be installed in the Belle II spectrometer in around Sep. 2017.