4th International Conference on Technology and Instrumentation in Particle Physics (TIPP 2017) May 21–26, 2017, Beijing, China

Spin-off Application of Silica Aerogel in Space: Capturing Intact Cosmic Dust in Low-Earth Orbits and Beyond

Makoto Tabata (Chiba Univ.)

makoto@hepburn.s.chiba-u.ac.jp On behalf of the Tanpopo Team

Outline

Introduction

- Application of silica aerogel in HEP experiments
- Spin-off application of aerogel as dust-capture media

Application of Silica Aerogel in Space Science

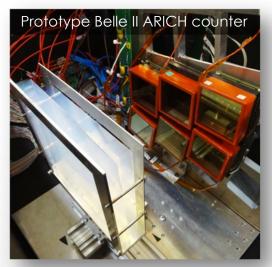
- Experiments in low-Earth orbits
- Cometary dust sample return mission in deep space

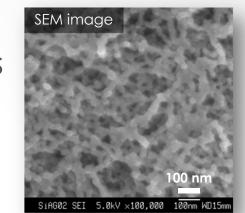
Astrobiology Mission: Tanpopo

- Objectives and status
- Aerogel-based capture instruments

Introduction

HEP Application of Silica Aerogel

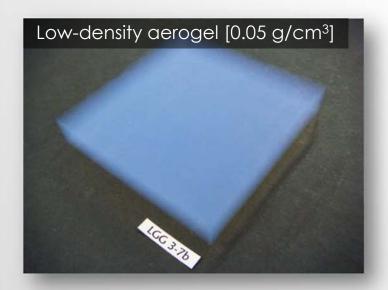

Silica aerogel:

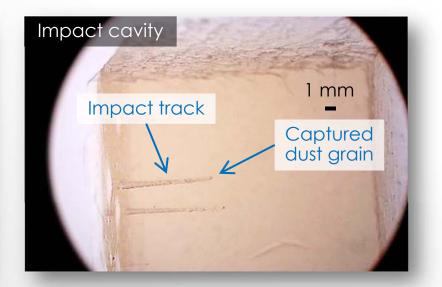

Colloidal foam of nanoscale SiO₂ particles

- Transparent
- Tunable refractive index [i.e., bulk density]
 n = 1.003–1.26 Journal ref. / M. Tabata et al., Nucl. Instrum. Methods A 623 (2010) 339.
 - Density determined by silica–air volume ratio

Application in high-energy physics: Cherenkov radiator

- Threshold-type Cherenkov counter; Ring imaging Cherenkov [RICH] counter
- Particle identification;
 Velocity measurement
- Accelerator-based particle- and nuclearphysics experiments: e.g., Belle II, LHCb, etc.; Space- and balloon-borne cosmic-ray experiments: e.g., BESS, AMS-02, etc.




o Presentation ref. / M. Tabata et al., in: Session R1-Particle identification(1) on May 23.

Spin-off Application of Aerogel in Space 5/18

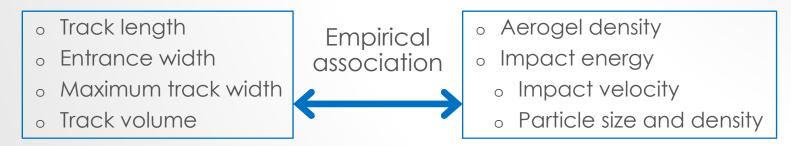
Q: How can we retrieve intact cosmic dust from space?

- Cosmic dust = Micron-size [~10 μm dia.]
 - = **Hypervelocity** [Max. ~16 km/s in low-Earth orbits]
- A: Expose "silica aerogel" in space!
- o Why aerogel?
 - $_{\circ}$ Ultralow density \rightarrow Intact dust capture inside the aerogel
 - Transparent \rightarrow Visible impact cavity/captured dust grain

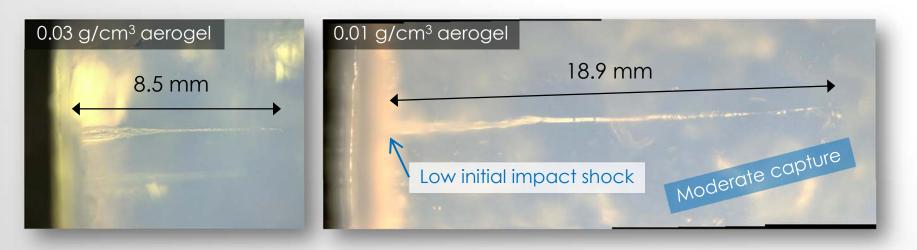
Laboratory Impact Experiment

• Test beam experiment? No, gas gun experiment.

Ground-based laboratory simulation of dust capture in aerogel


Two-stage light-gas gun

- Accelerator in the space science field
- 7-mm dia. bullet [Max. 7 km/s]
- Acceleration mechanism:
 - Gunpowder [1st stage] \rightarrow Piston \rightarrow H₂ gas [2nd stage] \rightarrow Projectile \rightarrow Target


Hypervelocity Impact Physics

Morphological analysis of impact tracks under an optical microscope

 Lower-density aerogel to absorb impact shock

30 µm glass beads shot at 6 km/s by the gas gun

Application of Silica Aerogel in Space Science

Cosmic Material Sample Return

Cosmic sample material return is very important.

 Planetary science, astrochemistry, astrobiology, space debris research, and etc.

Ground-based state-of-art analysis instruments are used.

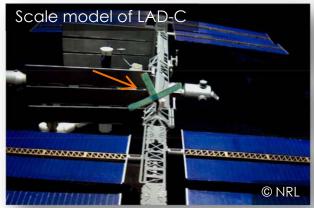
• Biochemical analysis, mineralogical analysis, and etc.

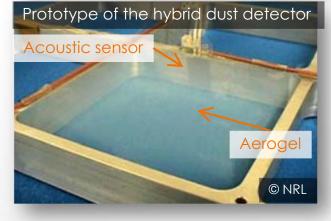
Aerogel was first recognized as promising cosmic dust capture media in the 1980s.

- o Use of aerogel in space since the 1990s.
- o First space missions in near-Earth orbits:
 - NASA's space shuttle cargo bay [0.02 g/cm³, 9-day exposure]
 - **ESA's Eureca freefrying spacecraft** [0.05 g/cm³, 11-month exposure]

LAD-C: Debris Collection Project in LEO ^{10/18}

LAD-C: Large Area Debris/Dust Collector aboard the International Space Station


 Project unfortunately canceled before building the system due to a political reason in 2007


Observation of ~100+ µm debris

- Potential risk of impact to orbital satellites
- No ground-based observation by radar
- Use of 10 m² aerogel-based collector

Hybrid dust detection

- Sample return by 0.06 g/cm³ largevolume aerogel tiles
- Real-time detection by an impact sensor [using acoustic vibration of aerogel by dust impacts]


Stardust: Deep Space Mission to a Comet 11/18

Stardust: NASA's comet Wild-2 dust sample return mission

- Launched in 1999 and returned to Earth in 2006
- First extra-terrestrial object's sample other than the Moon
- Interplanetary and interstellar dust at cruising phase

Flyby dust collection by a density-gradient aerogel-base sampler

- Aerogel density: ~0.01 g/cm³, [Surface], ~0.05 g/cm³ [Bottom]
- Flyby speed: 6.1 km/s

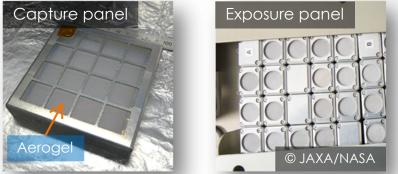
Astrobiology Mission: Tanpopo

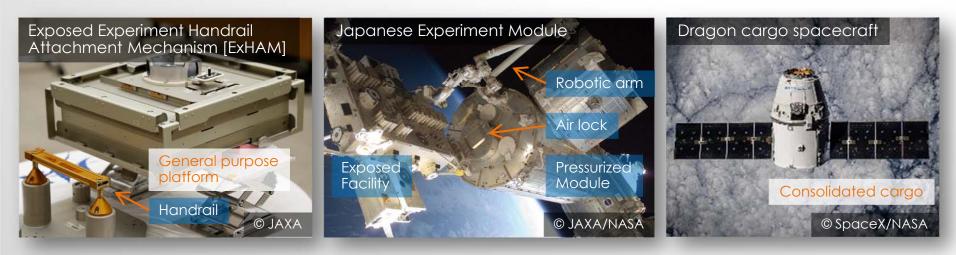
Tanpopo Mission Objectives

Japan's first astrobiology mission in space [International Space Station]

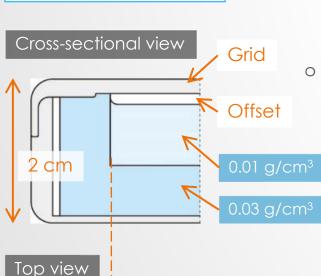
- Proposed in 2007
- Launched in 2015
- Retrieved in 2016, 2017, and 2018
- Test of interplanetary transfer of life or its precursor
 - Tanpopo (in Japanese) = Dandelion
 - Spread of dandelion's seeds on Earth
 → Transfer of life in space

Multifaceted sample return mission


- Cosmic dust capture experiment by silica aerogel
 - Microbes in terrestrial dust
 - Organic compounds in interplanetary dust
 - Space debris
- Space exposure experiment
 - Terrestrial microbe and organic compound samples

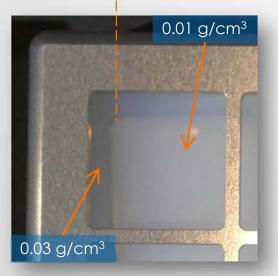

- 25+ institutes
- 50+ collaborators
 - Biologist
 - Chemist
 - Physicist
 - Planetary scientist
 - Engineer

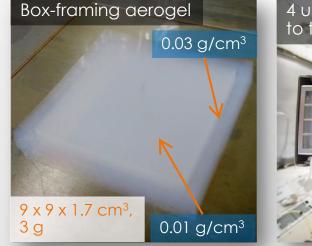
Tanpopo Instruments


- Instruments dedicated to the Tanpopo mission:
 Capture panels [CP] and exposure panels [EP] developed by the Tanpopo team
 Capture panel
 Exposure panel
 - CP: 12 units x 3 years = 36 units
 - EP: 1 unit x 3 years = 3 units
 - 10 × 10 × 2 cm³ per unit
 - Cost-effective sample return instruments

 Use of the exposure experiment opportunity provided by JAXA collaborating with NASA and SpaceX

Ultralow-density Double-layer Aerogel ^{15/18}


Capture panel design


0.01 g/cm³ ultralow-density aerogel World's lowest density used in space

Double-layer [box-framing] aerogel

- Surface layer: 0.01 g/cm³ [Brittle]
 - Capture ~10 µm dust particles
- Base layer: 0.03 g/cm³ [Relatively tough]
 - Protect the surface layer from vibrations
 - Capture high-energy dust particles
- Both the layers chemically combined

Journal ref. / M. Tabata et al., J. Sol–Gel Sci. Technol. 77 (2016) 325.

Tanpopo Mission Status

Rocket launched in Apr. 2015

- 2016, 2017, and 2018 samples
- $_{\circ}$ Arrival in the ISS

• ExHAM exposed in May 2015

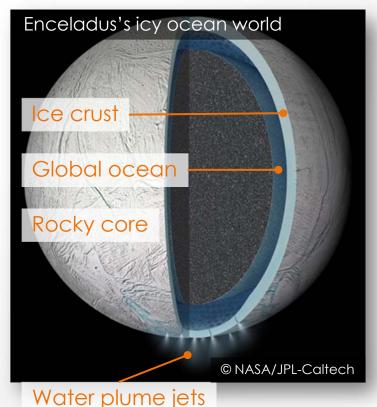
• CPs for 2016 attached to the ExHAM

• ExHAM recovered in Jun. 2016

- CPs for 2016 stored in the Pressurized Module
- Cargo spacecraft retrieved in Aug. 2016
- 2016 sample analysis and 2017 sample exposure in progress

© SpaceX

Beyond Low-Earth Orbits


Another possible habitable zone in our solar system: Saturn's moon Enceladus

• NASA's Cassini mission [Saturn and its satellite system observation]

- Gravity field analysis suggested:
 - Underground ocean [Liquid water]
- Plume analysis detected:
 - Organic molecules
 - Nano-silica particles
 - Hydrogen molecules [Free energy]
- Hydrothermal environment by tidal heating
 Possible extra-terrestrial life

Enceladus flyby missions proposed by NASA and JAXA

 Plume particle in-situ analysis and sample return based on the aerogel intact capture technique

Summary

 A spin-off application of silica aerogel as intact cosmic dust collection media was recognized in the 1980s.

- Laboratory gas gun experiments support the application of aerogel to hypervelocity particle capture.
- Aerogel has been used in several missions in low-Earth orbits and deep space since the 1990s onwards.
 - Retrieved dust samples are useful in planetary science, astrochemistry, and space debris research fields.
- Recent astrobiology missions employ high-performance aerogel-based dust sampler.
 - The Tanpopo mission will create new knowledge about the origin of terrestrial life, and the proposed Enceladus mission will explore possible extra-terrestrial life.