next up previous
Next: About this document ... Up: mechanics Previous: Solution Example I

Solution Example II

Let us define the z-axis equal to to the direction of the angular velocity vector ${\bf\omega}$. The variables in the coordinate system K and those in the co-rotational system K' are related by the rotation matrix as

\begin{displaymath}
\left(
\begin{array}{c}
x \\
y \\
\end{array}\right)
=
\...
...\left(
\begin{array}{c}
x^{'} \\
y^{'} \\
\end{array}\right)
\end{displaymath} (10)

where $\theta$ is an angle between $x$-axis in K and $x^{'}$-axis in K'. Note that
\begin{displaymath}
\dot{\theta}\equiv {d\theta\over dt} = \omega
\end{displaymath} (11)

and
\begin{displaymath}
{d^2\theta\over dt^2} = {d\omega\over dt}\equiv \dot{\omega}
\end{displaymath} (12)

Then the time differential operation applied in the equation (10) gives
$\displaystyle \left(
\begin{array}{c}
{d^2x\over dt^2} \\
{d^2y\over dt^22} \\
\end{array}\right)$ $\textstyle =$ $\displaystyle \left(
\begin{array}{cc}
\cos\theta & -\sin\theta \\
\sin\theta ...
...(
\begin{array}{c}
{dx^{'}\over dt} \\
{dy^{'}\over dt} \\
\end{array}\right)$  
    $\displaystyle -\dot{\omega}
\left(
\begin{array}{c}
y \\
-x \\
\end{array}\right)
-\omega^2
\left(
\begin{array}{c}
x \\
y \\
\end{array}\right).$ (13)

Here we occasionally used the relation (10) whenever applicable. Multiplication of the inversed rotation matrix from left-side to the equation above then leads to
$\displaystyle \left(
\begin{array}{c}
{d^2x^{'}\over dt^2} \\
{d^2y^{'}\over dt^2} \\
\end{array}\right)$ $\textstyle =$ $\displaystyle \left(
\begin{array}{cc}
\cos\theta & \sin\theta \\
-\sin\theta ...
...(
\begin{array}{c}
{dx^{'}\over dt} \\
{dy^{'}\over dt} \\
\end{array}\right)$  
  $\textstyle +$ $\displaystyle \dot{\omega}
\left(
\begin{array}{cc}
\cos\theta & \sin\theta \\ ...
... \\
\end{array}\right)
\left(
\begin{array}{c}
x \\
y \\
\end{array}\right).$  

Using the Newtonian equation of motion

\begin{displaymath}
\left(
\begin{array}{c}
m{d^2x\over dt^2} \\
m{d^2y\over dt...
...t)
=
\left(
\begin{array}{c}
F_x \\
F_y
\end{array}\right)
\end{displaymath} (14)

where $(F_x, F_y)$ is the external force of the x and y component, respectively, and
\begin{displaymath}
\left(
\begin{array}{c}
F_x \\
F_y \\
\end{array}\right)
...
...(
\begin{array}{c}
F_x^{'} \\
F_y^{'} \\
\end{array}\right),
\end{displaymath} (15)

we finally obtain
$\displaystyle m{d^2x^{'}\over dt^2}$ $\textstyle =$ $\displaystyle F_x^{'}+2m\omega {dy^{'}\over dt} +m\omega^2x^{'}+m\dot{\omega}y^{'}$ (16)
$\displaystyle m{d^2y^{'}\over dt^2}$ $\textstyle =$ $\displaystyle F_y^{'}-2m\omega {dx^{'}\over dt} + m\omega^2y^{'}-m\dot{\omega}x^{'}$ (17)

One finds the apparent force term by $\dot{\omega}$.


next up previous
Next: About this document ... Up: mechanics Previous: Solution Example I
Shigeru Yoshida
2003-01-15