only

新着情報 講義資料 在庫管理 参考文献 実験

参考文献

最近読んでる文献(max=81)
 関連: ストロンチウム90カウンター,  検出器R&D,  実験グループ, ダークマター探索,  肺がん・ラドン,  PET,  天文物理,  ハドロン物理,  素粒子物理,  その他
日本物理学会誌
IEEE Conference Record
卒業論文・修士論文・学位論文

Reference List

検出器 R&D

[2] Measurement of electron drift parameters for helium and CF4-based gases (pdf) (html) (翻訳) (reference)
J. Cavra, et al., Nucl. Instr. Meth. A 324 (1993) 113-126.
Reference

[1] The μ-RWELL: A compact, spark protected, single amplification-stage MPGD (pdf) (html) (翻訳) (reference)
M. Poli Lener et al., Nucl. Instr. Meth. A 824 (2016) 565–568.
Reference

実験グループ

GERDA (web)

The GERDA experiment has been proposed in 2004 as a new 76Ge double-beta decay experiment at LNGS. The GERDA installation is a facility with germanium detectors made out of isotopically enriched material. The detectors are operated inside a liquid argon shield. The experiment is located in Hall A of LNGS.
  • Upgrade for Phase II of the GERDA Experiment
    Eur. Phys. J. C 78 (2018) 388
  • Improved Limit on Neutrinoless Double-β Decay of 76Ge from GERDA Phase II
    Phys. Rev. Lett. 120 (2018) 132503
  • GERDA Phase II: search for neutrinoless double beta decay
    PoS (EPS-HEP2017) 150
  • Background-free search for neutrinoless double-β decay of 76Ge with GERDA
    Nature 544 (2017) 47 (6 April 2017) suppl. material
  • Limits on uranium and thorium bulk content in Gerda Phase I detectors Astroparticle Physics 91 (2017) 15-21

  • EXO(web)
    test
    CUORE
  • Search for neutrinoless double-beta decay of 130Te with CUORE-0
    K. Alfonso et al., Phys. Rev. Lett. 115 (2015) 102502. (pdf) (html)
  • CUORE crystal caliration runs: Results on radioactive contamination and extrapolation to
    F. Alessandria et al., Astr. Phys. 35 (2012) 839-849. CUORE background(pdf) (html)
  • CUORE: a cryogenic underground observatory for rate events
    C. Arnaboldi et al., Nucl. Instr. Meth. A 518 (2004) 775-798. (pdf)
  • NOvA(web)
    test
    Super Kamiokande(web)
  • Phys. Rev. D 98, 052006 (2018)(web)<>
  • Phys. Rev. D 98, 052006 (2018)(web)
  • IceCube(web)
    test
    PANDA X(web)
    test
    CDEX (China Dark matter EXperiment)

    (go to web) [1] CDEX Dark Matter Experiment: Status and Prospects (pdf), (arxive)
    (翻訳) (reference)
    Hao Ma, et al., arXiv:1712.06046 [hep-ex] (2017).


    [2] The CDEX Dark Matter Program at the China Jinping Underground Laboratory (pdf), (arxive)
    (翻訳) (reference)
    Qian Yue, et al., arXiv:1602.02462 [physics.ins-det] (2016)


    [2] Cryogenic system of China Dark matter Experiment (CDEX-10) (pdf), (html)
    (翻訳) (reference)
    Feipeng Ning, et al., Cryogenics, Volume 76, June 2016, Pages 10-15.



    DEAP-3600(web)

    [1] First results from the DEAP-3600 dark matter search with argon at SNOLAB (pdf), (arxive)
    (翻訳) (reference)
    P.-A. Amaudruz, et al., arXiv:1707.08042 [astro-ph.CO] (2017)



    NEWAGE(web)

    [23] Study of Negative-Ion TPC Using μ-PIC for Directional Dark Matter Search (pdf), (html)
    (翻訳) (reference)
    T. Ikeda, et al., EPJ Web of Conf. 174. 02006 (2018) MPGD2015.
    Reference


    [2] Development of a low-alpha-emitting μ-PIC for NEWAGE direction-sensitive dark-matter search (pdf) (pdf_arxive) (html) (reference)
    H. Takashi, et al., AIP conf. Proc. 1921, 070001 (2018).
     方向感度をもつ暗黒物質探索NEWAGEの低α線放射μ-PICの開発:ダークマター直接探索研究NEWAGEにおいて、従来のTPC(μ-PIC)ではバックグラウンドのα線が材質ポリミドに多かった。なので、新しく低(α線)放射能な素材(エポキシ追加)を使用して、α線量を7.55x10-2未満まで減らした。今後このμ-PICを使って、低BGでダークマターを探索する。
    Reference
    [1] Planck Collaboration, A&A 571 (2014) A16.
    [2] R. Bernabei et al., J. Phys. Conf. Ser. 375 (2012) 012002.
    [3] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301.
    [4] D.S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303.
    [5] Y. Yang, On behalf of PandaX-II Collaboration, arXiv:1612.01223v1.
    [6] D.N. Spergel, Phys. Rev. D 37 (1988) 1353.
    [7] T. Naka et al., Nucl. Instrm. Methods Phys. Res. Sect. A 581 (2007) 761.
    [8] L.M. Capparelli et al., Physics of the Dark Universe 9-10 (2015) 24-30.
    [9] E. Daw et al., Astropart. Phys. 35 (2012) 397.
    [10] S. Ahlen et al., Phys. Lett. B 695 (2011) 124.
    [11] D. Santos et al., J. Phys. Conf. Ser. 309 (2011) 012014.
    [12] A. Takada et al., Nucl. Instr. Meth. Phys. Res. Sect. A 573, (2007) 195.
    [13] F. Sauli and A. Sharma, Annu. Rev. Nucl. Part. Sci. 49, (1999) 341.
    [14] K. Nakamura et al., Prog. Theor. Exp. Phys. (2015) 043F01.
    [15] S. Agostinelli et al., Nucl. Instr. Meth. Phys. Res. A 506 (2003) 250.
    [16] W. K. Warburton, J. Wahl, and M. Momayezi, Ultra-low Background Gas-filled Alpha Counter, U.S. Patent 6 732 059, May 4, 2004.
         W. K. Warburton et al., IEEE Nuclear Sci. Symp. Conf. Rec., Oct. 16-22, 2004, vol.1, pp. 577-581, Paper N16-80.
         M. Z. Nakib et al., AIP Proc. 1549, 78-81.
    [17] J.F. Ziegler, J.P. Biersack SRIM The Stopping and Range of Ions in Matter, Code (1985).

    [20] NEWAGE - direction-sensitive dark matter serach experiment (pdf), (html)
    (翻訳) (reference)
    K. Nakamura et al., Phys. Proc. 61 (2015) 737-741.
    Reference


    [12] Direction-sensitive dark matter search with gaseous tracking detector NEWAGE-0.3b’(pdf) (html) (翻訳) (reference)
    K. Nakamura et al., PTEP 2015, 043F01.
    NEWAGEはCF4ガスで満たされたマイクロ・タイム・プロジェクション・チェンバーを用いた方向感度を持つ暗黒物質探索実験である。2008年神岡での我々の最初の地下測定に続いて、我々は感度改善した新しい検出器NEWAGE-0.3b’を開発した。NEWAGE-0.3b’は前回の検出器の標的体積の2倍、低いエネルギー閾値、そしてデータ収集システムを改良した。2013年に神岡地下実験場でNEWAGE-0.3’によって暗黒物質探索に着手した。0.327 kg・daysの暴露は90%C.L.の方向感度・スピン依存性の断面積が200 GeV/c2のWIMPにおいて557 pbの限界値を達成した。最初の地下測定と比べて(relative)、新しい方向感度の限界はファクター約10まで改善され、そしてこの限界値は(我々の)データにとって最高のものです。  
    Reference
    [1] P. A. R. Ade et al., Astron. Astrophys. 571, A16 (2014).
    [2] G. Jungman et al., Phys. Rep. 267, 195 (1996).
    [3] J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).
    [4] D. N. Spergel, Phys. Rev. D 37, 1353 (1988).
    [5] K. Miuchi et al., Phys. Lett. B 686, 11 (2010).
    [6] A. Takada et al., Nucl. Instr. Meth. Phys. Res. Sect. A 573, 195 (2007).
    [7] F. Sauli and A. Sharma, Annu. Rev. Nucl. Part. Sci. 49, 341 (1999).
    [8] H. Kubo et al., IEEE Nucl. Sci. Symp. Conf. Rec. 1, 371 (2005).
    [9] K. Nakamura et al., JINST 7, C02023 (2011).
    [10] H. Nishimura, PhD thesis, Kyoto University (2009).
    [11] J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, (Pergamon Press, Oxford, 1985).
    [12] MIMAC, EAS publication series, Proc. CYGNUS 2011, Third Inter. Conf. on Directional Detection of Dark Matter, 53, 25 (2012).
    [13] C. Savage et al., Phys. Rev. D 70, 123513 (2004).
    [14] R. Bernabei et al., New J. Phys. 2, 15.1 (2000).
    [15] G. J. Alner et al., Phys. Lett. B 616, 17 (2005).
    [16] H. S. Lee, et al. (KIMS Collaboration), Phys. Rev. Lett. 99, 091301 (2007).
    [17] Y. Shimizu et al., Phys. Lett. B 633, 195 (2006).
    [18] J. Angle, et al. (XENON Collaboration), Phys. Rev. Lett. 101, 091301 (2008).
    [19] Z. Ahmed et al. (CDMS Collaboration), Phys. Rev. lett. 102, 011301 (2009).
    [20] S. Archambault et al., Phys. Lett. B 711, 153 (2012).
    [21] E. Behnke et al., Phys. Rev. D 86, 052001 (2012).
    [22] M. Felizardo et al., [arXiv:1106.3014v3] .
    [23] S. Ahlen et al., Phys. Lett. B 695, 124 (2011).
    [24] E. Daw et al., Astropart. Phys. 35, 397 (2012).

    [18] Direction-sensitive dark matter search results in a surface laboratory (pdf), (html)
    (翻訳) (reference)
    M. Kimura et al., Phys. Lett. B 654 (2007) 58-64. NEWAGE
    Reference


    [3] First underground results with NEWAGE-0.3a direction-sensitive dark matter detector(pdf) (html) (翻訳) (reference)
    K. Miuchi et al. (NEWAGE Collaboration): Phys. Lett. B 686 (2010) 11.
     神岡地下実験室でNEWAGE-0.3a検出器を用いた暗黒物質直接探索実験が行われた。NEWAGE-0.3aは152 Torr*)のCF4ガスのマイクロ時間プロジェクション・チェンバーである。基準となる体積と標的の質量はそれぞれ20x25x31 cm3と0.0115 kgである。0.524 kg daysの露出で、方向に感度をもつ方法によって改善されたスピンに依存している弱い相互作用する質量をもつ粒子(WIMP)と陽子の断面積の限界は150 GeV/c2のWIMPにおいて5400 pbの新しい記録を達成した。我々は残された背景雑音を研究し、そして取り巻くγ線が残された背景雑音の1/5を分布していることとガスチェンバーの中の放射能汚染が分布していたことがわかった。
    Reference
    [1] J. Dunkley, et al., SDSS, Astrophys. J. 701 (2009) 1804.
    [2] M. Tegmark, et al., SDSS, Astrophys. J. 606 (2004) 702.
    [3] M. Tegmark, et al., SDSS, Phys. Rev. D 69 (2004) 103501.
    [4] A.G. Riess, et al., Astron. J. 116 (1998) 1009.
    [5] S. Perlmutter, et al., Astrophys. J. 517 (1999) 565.
    [6] J. Ellis, et al., Phys. Lett. B 603 (2004) 51.
    [7] A.A. Abdo, et al., Phys Rev. Lett. 102 (2009) 181101.
    [8] F. Aharonian, et al., HESS Collaboration, Phys. Rev. Lett. 97 (2006) 221102.
    [9] R. Bernabei, et al., Phys. Lett. B 480 (2000) 23.
    [10] J. Angle, et al., XENON Collaboration, Phys. Rev. Lett. 100 (2008) 021303.
    [11] B. Ahmed, et al., Astropart. Phys. 19 (2003) 691.
    [12] Y. Shimizu, et al., Phys. Lett. B 633 (2006) 195.
    [13] D.S. Akerib, et al., CDMS Collaboration, Phys. Rev. D 72 (2005) 052009.
    [14] R. Bernabei, et al., Eur. Phys. J. C 56 (2008) 333.
    [15] H.S. Lee, et al., KIMS Collaboration, Phys. Rev. Lett. 99 (2007) 091301. [16] E. Behnke, et al., Science 319 (2008) 933.
    [17] H.P. Nilles, Phys. Rep. 110 (1984) 1.
    [18] A.M. Green, B. Morgan, Astropart. Phys. 27 (2007) 142.
    [19] P. Belli, et al., Nuovo Cimento C 15 (1992) 473.
    [20] R. Bernabei, et al., Eur. Phys. C 28 (2003) 203.
    [21] H. Sekiya, et al., Proceedings of Fifth International Workshop on the Identification of Dark Matter, 2004, p. 378.
    [22] K.N. Buckland, et al., Phys. Rev. Lett. 73 (1994) 1067.
    [23] T. Tanimori, et al., Phys. Lett. B 578 (2004) 241.
    [24] D. Dujmic, et al., Astropart. Phys. 30 (2008) 58.
    [25] T. Naka, et al., Nucl. Instrm. Methods Phys. Res. Sect. A 581 (2007) 761.
    [26] J. Rich, M. Spiro, Saclay preprint DPhPE 88-04.
    [27] G. Masek, et al., Proceedings of the Workshop on Particle Astrophysics, 1989, p. 43.
    [28] G. Gerbier, et al., Proceedings of the Workshop on Particle Astrophysics, 1989, p. 43.
    [29] H. Burgos, et al., Nucl. Instrm. Methods Phys. Res. Sect. A 600 (2009) 417.
    [30] H. Burgos, et al., Astropart. Phys. 28 (2007) 409.
    [31] K. Miuchi, et al., Phys. Lett. B 654 (2007) 58.
    [32] H. Nishimura, et al., Astropart. Phys. 31 (2009) 185.
    [33] A. Takada, et al., Nucl. Instrm. Methods Phys. Res. Sect. A 573 (2007) 195.
    [34] F. Sauli, A. Sharma, Annu. Rev. Nucl. Part. Sci 49 (1999) 341.
    [35] J.D. Lewin, P.F. Smith, Astropart. Phys. 6 (1996) 87.
    [36] D. Spergel, Phys. Rev. D 37 (1988) 1353.
    [37] J.F. Ziegler, J.P. Biersack, SRIM The stopping and range of ions in matter, Code.
    [38] D.S. Akerib, et al., CDMS Collaboration, Phys. Rev. D 73 (2006) 011102(R).
    [39] J. Angle, et al., XENON Collaboration, Phys. Rev. Lett. 101 (2008) 091301.
    [40] Private communication with A. Minamino, University of Tokyo.
    [41] SK Collaboration, Nucl. Instrm. Methods Phys. Res. Sect. A 501 (2003) 418.


    LUX

    (web)
  • "Signal yields, energy resolution, and recombination fluctuations in liquid xenon", Accepted for publication in Phys. Rev. D, December 15, 2016. DOI: 10.1103/PhysRevD.95.012008, arXiv:1610.02076
  • "Results from a search for dark matter in the complete LUX exposure", Accepted for publication in Phys. Rev. Lett., December 5, 2016. DOI: 10.1103/PhysRevLett.118.021303, arXiv:1608.07648
  • "Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics", arXiv:1608.05381
  • "Chromatographic separation of radioactive noble gases from xenon", arXiv:1605.03844
  • "Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment", Phys. Rev. Lett, 116:161302, April 2016. DOI: 10.1103/PhysRevLett.116.161302 , arXiv:1602.03489
  • "Improved WIMP scattering limits from the LUX experiment", Phys. Rev. Lett, 116:161301, April 2016. DOI: 10.1103/PhysRevLett.116.161301, arXiv:1512.03506 Data from Figures 1-3
  • "Tritium calibration of the LUX dark matter experiment,", Phys. Rev. D, 93:072009, Apr 2016. DOI: 10.1103/PhysRevD.93.072009, arXiv:1512.03133
  • "FPGA-based Trigger System for the LUX Dark Matter Experiment,", Nucl. Instrum. Meth. A 818 57-67 (May 2016). DOI: 10.1016/j.nima.2016.02.017, arXiv:1511.03541
  • "Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector," Astropart. Phys. 62 (2015) 33-46, arXiv:1403.1299
  • "First results from the LUX dark matter experiment at SURF," Phys. Rev. Lett. 112, 091303. arXiv:1310.8214
  • "The Large Underground Xenon (LUX) Experiment," Nucl. Instrum. Meth. A 704 111-126 (2013). arXiv:1211.3788
  • "Technical Results from the Surface Run of the LUX Dark Matter Experiment," arXiv:1210.4569
  • "An Ultra-Low Background PMT for Liquid Xenon Detectors," arXiv:1205.2272
  • "Radio-assay of Titanium samples for the LUX Experiment," arXiv:1112.1376
  • "LUXSim: A Component-Centric Approach to Low-Background Simulations," Nucl. Instrum. Meth. A 675 63 (2012). arXiv:1111.2074
  • "Data Acquisition and Readout System for the LUX Dark Matter Experiment," Nucl. Instrum. Meth. A 668 1 (2012). arXiv:1108.1836
  • XMASS

    (web) [11] XMASS experiment, dark matter search with liquid xenon detector (pdf), (html)
    A. Munamino, Nucl. Inst. Meth. A 623 (2010) 448–450.

    [10] XMASS detector (pdf), (html)
    K. Abe et al., Nucl. Inst. Meth. A 716 (2013) 78–85.

    [9] Direct dark matter search by annual modulation in XMASS-I (pdf), (html)
    K. Abe et al., Physics Letters B 759 (2016) 272–276.

    [8] Status of the XMASS experiment (pdf), (html)
    S. Moriyama, Physics Procedia 61 (2015) 138–143.

    [7] Direct Dark Matter Search with XMASS (pdf), (html)
    Kazuyoshi Kobayash, Nuclear and Particle Physics Proceedings 273–275 (2016) 361–366.


    DAMA/LIBRA NaI LXe
    (go to web)
    [3] First model independent results from DAMA/LIBRA-phase2 (arxiv)
    R. Bernabei, et al., arXiv:1805.10486v1.

    [2] DAMA annual modulation and mirror Dark Matter (pdf), (html)
    R. CerulliP et al., Eur. Phys. J. C (2017) 77:83.

    [1] The DAMA/LIBRA apparatus (pdf), (html)
    (翻訳) (reference)
    R. Bernabei et al., Nucl. Instr. Meth. A 592 (2008) 297.
     DAMA/LIBRA検出器
    Reference


    天文物理関連

    [3] An absorption profile centred at 78 megahertz in the sly-averaged spectrum (pdf) (html) (翻訳) (reference)
    P. Adamson et al. (NOvA Collaboration) Phys. Rev. Lett. 116, 151806 (2016).
    Reference

    [2] First Measurement of Electron Neutrino Appearance in NOvA (pdf) (html) (翻訳) (reference)
    P. Adamson et al. (NOvA Collaboration) Phys. Rev. Lett. 116, 151806 (2016).
    Reference

    [1] Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons(pdf) (html) (翻訳) (reference)
    K. Morishima et al., Nature 24647 (2017).
    Reference

    ダークマター探索関連

    [23] Current status of neutrinoless double-beta decay searches (pdf) (html) (翻訳) (reference)
    Reyco Henning, Reviews in Physics 1 (2016) 29–35.
    この記事はニュートリノレス二重ベータ崩壊の実験的探索の現在の状況と近い期間の将来を簡単に批評する。ニュートリノレス二重ベータ崩壊の動機と歴史を議論した後で、現在の実験とこれら感度を制限する因子に注目しよう。その後、転換させたニュートリノ質量の階層性(hierarchy)を探索する実験の提案の要求と展望を議論しよう。
    Reference
    [1] E. Majorana, Nuovo Cimento 14 (1937) 171.
    [2] M. Goeppert-Mayer, Phys. Rev. 48 (1935) 512.
    [3] G. Racah, Nuovo Cimento 14 (1937) 322.
    [4] F.F. Deppisch, M. Hirsch, H. Päs, J. Phys. G Nucl. Part. Phys. 39 (2012) 124007.
    [5] F. Bonnet, M. Hirsch, T. Ota, W. Winter, J. High Energy Phys. 2013 (2013) 55.
    [6] J. Schechter, J. Valle, Phys. Rev. D 25 (1982) 2951.
    [7] W.-Y. Keung, G. Senjanovic ́, Phys. Rev. Lett. 50 (1983) 1427.
    [8] V. Cirigliano, A. Kurylov, M.J. Ramsey-Musolf, P. Vogel, Phys. Rev. Lett. 93 (2004) 231802.
    [9] P. Fileviez Pérez, T. Han, G. Huang, T. Li, K. Wang, Phys. Rev. D 78 (2008) 015018.
    [10] B.C. Allanach, C.H. Kom, H. Päs, Phys. Rev. Lett. 103 (2009) 091801.
    [11] G. Aad, et al., J. High Energy Phys. 2011 (2011) 107.
    [12] A. Melfo, M. Nemevšek, F. Nesti, G. Senjanovic ́, Y. Zhang, Phys. Rev. D 85 (2012) 055018.
    [13] J.C. Helo, S.G. Kovalenko, M. Hirsch, H. Päs, Phys. Rev. D 88 (2013) 011901.
    [14] J.C. Helo, S.G. Kovalenko, M. Hirsch, H. Päs, Phys. Rev. D 88 (2013) 073011.
    [15] T. Peng, M. Ramsey-Musolf, P. Winslow (2015).
    [16] H. Päs, W. Rodejohann, New J. Phys. 17 (2015) 115010.
    [17] M. Duerr, M. Lindner, A. Merle, J. High Energy Phys. 2011 (2011) 91.
    [18] J.D. Vergados, H. Ejiri, F. S ̆imkovic, Rep. Prog. Phys. 75 (2012) 106301.
    [19] J. Suhonen, O. Civitarese, J. Phys. G Nucl. Part. Phys. 39 (2012) 124005.
    [20] R.G.H. Robertson, Mod. Phys. Lett. A 28 (2013) 1350021.
    [21] Katrin design report2004, http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf. (accessed 14.03.16).
    [22] D.M. Asner, et al., Phys. Rev. Lett. 114 (2015) 162501.
    [23] L. Gastaldo, et al., J. Low Temp. Phys. 176 (2014) 876.
    [24] P.A.R. Ade, et al., Planck 2015 results. XIII. Cosmological parameters (2015). ArXiv:1502.01589
    [25] G. Drexlin, et al., Adv. High Energy Phys. 2013 (2013) 293986.
    [26] C. Weinheimer, K. Zuber, Annalen der Physik 525 (2013) 565.
    [27] F.T. Avignone III, S. Elliott, J. Engel, Rev. Mod. Phys. 80 (2008) 481.
    [28] B. Schwingenheuer, Annalen der Physik 525 (2013) 269.
    [29] S.M. Bilenky, C. Giunti, Int. J. Mod. Phys. A 30 (2015) 1530001.
    [30] C. Giunti, C. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, 2007.
    [31] I. Ogawa, et al., Nucl.Phys. A730 (2004) 215.
    [32] M. Agostini, et al., Phys. Rev. Lett. 111 (2013) 122503.
    [33] R. Arnold, et al., Phys. Rev. Lett. 95 (2005) 182302.
    [34] R. Arnold, et al., Phys. Rev. D 89 (2014) 111101.
    [35] K. Alfonso, et al., Phys. Rev. Lett. 115 (2015) 102502.
    [36] J. Albert, et al., Nature 510 (2014) 229.
    [37] J. Argyriades, et al., Phys. Rev. C 80 (2009) 032501.
    [38] C. Arnaboldi, et al., Nucl. Instr. Meth. A 518 (2004) 775.
    [39] E. Fiorini, T. Niinikoski, Nucl. Instr. Meth. 224 (1984) 83.
    [40] C. Enss, D. McCammon, J. Low Temp. Phys. 151 (2008) 5.
    [41] M. Chen, Nucl. Phys. Proc. Suppl. 145 (2005) 65.
    [42] B. Aharmim, et al., Phys. Rev. C88 (2013) 025501.
    [43] A. Maio, J. Phys. Conf. Ser. 587 (2015) 012030.
    [44] S.D. Biller, Phys. Rev. D 87 (2013) 071301.
    [45] A. Wright, “Liquid scintillator based double beta decay experiments”, Conference Presentation at International Workshop on Baryon and Lepton Number Violation, 2015.
    [46] A. Gando, et al., Phys. Rev. C 85 (2012) 045504.
    [47] A. Gando, et al., Phys. Rev. Lett. 110 (2013) 062502.
    [48] K. Asakura, et al., AIP Conf. Proc. 1666 (2015) 170003.
    [49] M. Auger, et al., J. Instrum. 7 (2012) P05010.
    [50] M. Auger, et al., Phys. Rev. Lett. 109 (2012) 032505.
    [51] D. Leonard, et al., Nucl. Instr. Meth. A 591 (2008) 490.
    [52] J.B. Albert, et al., Phys. Rev. C 92 (2015) 015503.
    [53] F. Retìre, “From EXO-200 to nEXO towards the inverted mass hierarchy”, Conference Presentation at International Workshop on Baryon and Lepton Number Violation, 2015.
    [54] A. Pocar, Nucl. Part. Phys. Proc. 265 (2015) 42.
    [55] M.K. Moe, Phys. Rev. C 44 (1991) R931.
    [56] V. Alvarez, et al., J. Instrum. 7 (2012) T06001.
    [57] J. Gomez-Cadenas, et al., Adv. High Energy Phys. 2014 (2014) 907067.
    [58] J. Gomez-Cadenas (2014). ArXiv:1411.2433
    [59] G.F. Knoll, Radiation Detection and Measurement, third ed., John Wiley & Sons, Inc., 2010.
    [60] K.H. Ackermann, et al., Eur. Phys. J. C 73 (2013) 2330.
    [61] M. Agostini, et al., Eur. Phys. J. C 74 (2014) 2764.
    [62] C.E. Aalseth, et al., Phys. Rev. D 65 (2002) 092007.
    [63] C.E. Aalseth, et al., Phys. Rev. D 70 (2004) 078302.
    [64] H.V. Klapdor-Kleingrothaus, et al., Eur. Phys. J. A 12 (2001) 147.
    [65] K.T. Knopfle, PoS TIPP2014 (2014) 109.
    [66] N. Abrgall, et al., Adv. High Energy Phys. 2014 (2014). Article ID 365432.
    [67] P.S. Barbeau, J.I. Collar, O. Tench, JCAP 2007 (2007) 009.
    [68] C.E. Aalseth, et al., Phys. Rev. Lett. 101 (2008) 251301.
    [69] C.E. Aalseth, et al., Phys. Rev. Lett. 106 (2011) 131301.
    [70] C.E. Aalseth, et al., Phys. Rev. Lett. 107 (2011) 141301.
    [71] C.E. Aalseth, et al., Phys. Rev. D 88 (2013) 012002.
    [72] G. Giovanetti, et al., Physics Procedia 61 (2015) 77.
    [73] F. Avignone, et al., Phys. Rev. D 35 (1987) 2752.
    [74] E. Paschos, K. Zioutas, Phys. Lett. B 323 (1994) 367.
    [75] R. Creswick, et al., Phys. Lett. B 427 (1998) 235.
    [76] M. Krcmar, Z. Krecak, M. Stipcevic, A. Ljubicic, D. Bradley, Phys. Lett. B 442 (1998) 38.
    [77] A. Morales, et al., Astropart. Phys. 16 (2002) 325.
    [78] A. Ljubicic, D. Kekez, Z. Krecak, T. Ljubicic, Phys. Lett. B 599 (2004) 143.
    [79] A. Derbin, et al., JETP Lett. 85 (2007) 12.
    [80] A. Derbin, et al., Bull. Russ. Acad. Sci. Phys. 71 (2007) 832.
    [81] P. Belli, et al., Nucl. Phys. A 806 (2008) 388.
    [82] D. Kekez, A. Ljubicic, Z. Krecak, M. Krcmar, Phys. Lett. B 671 (2009) 345.
    [83] Z. Ahmed, et al., Phys. Rev. Lett. 103 (2009) 141802.
    [84] A. Derbin, et al., Eur. Phys. J. C 62 (2009) 755.
    [85] A. Derbin, V. Muratova, D. Semenov, E. Unzhakov, Phys. At. Nucl. 74 (2011) 596.
    [86] P. Belli, et al., Phys. Lett. B 711 (2012) 41.
    [87] E. Armengaud, et al., J. Cosmol. Astropart. Phys. 2013 (2013) 067.
    [88] R. Arnold, et al., Phys. Rev. D92 (2015) 072011.
    [89] R. Arnold, et al., Eur. Phys. J. C 70 (2010) 927.
    [90] D.R. Artusa, et al., Eur. Phys. J. C 74 (2014) 3096.
    [91] F. Bellini, AIP Conf.Proc. 1498 (2012) 237.
    [92] N. Khanbekov, Phys.Atom.Nucl. 76 (2013) 1086.
    [93] K. Zuber, Phys. Lett. B519 (2001) 1.
    [94] T. Bloxham, et al., Phys.Rev. C76 (2007) 025501.
    [95] O. Cremonesi, M. Pavan, Adv. High Energy Phys. 2014 (2014) 951432.

    [22] Review of matematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil (pdf), (html)
    (翻訳) (reference)
    J. D. Lewin, P. F. Smith, Astr. Phys. 6 (1996) 87-112.
    Reference


    [21] Development of gaseous tracking device for the search of WIMPs (pdf), (html)
    (翻訳) (reference)
    H. Sekiya et al., Nucl. Instr. Meth. A 573 (2007) 204-207.
    Reference


    [19] Optimized running conditions and sensitivity for direction sensitive detectors of WIMP dark matter (pdf), (html)
    (翻訳) (reference)
    J. Tatarowicz, C. J. Martoff, Astr. Phys. 35 (2011) 235-241.
    Reference


    [17] WIMP tracking with Cryogenic nuclear emulsion (pdf), (html)
    (翻訳) (reference)
    M. Kimura et al., Nucl. Instr. Meth. A 845 (2017) 373-377.  NIT実験
    Reference


    [16] 3-D tracking in a miniature time projection chamber (pdf), (html)
    (翻訳) (reference)
    S. E. Vahsen et al., Nucl. Instr. Meth. A 78 (2015) 95.  D3-Micro実験
    Reference


    [15] Development of a front end ASIC for Dark Matter directional detection with MIMAC (pdf), (html)
    (翻訳) (reference)
    J. P. Richer et al., Nucl. Instr. Meth. A 620 (2010) 470.
     MIMAC実験
    Reference


    [14] The Dark Matter Time Projection Chamber 4Shooter directional dark matter detector: Calibration in a surface laboratory (pdf), (html)
    (翻訳) (reference)
    J. B. R. Battat et al., Nucl. Instr. Meth. A 755 (2014) 6.
     4Shooter実験
    Reference


    [6] Search for dark photons from neutral meson decays in p+p and d+Au collisions at √sN N = 200 GeV (pdf), (html)

    [5] Search for the dark photon in π0 decays (pdf), (html)

    [4] First measurement of nuclear recoil head-tail sense in a fiducialised WIMP dark matter detector(pdf) (html) (翻訳) (reference)
    J.B.R. Battata et al. (DRIFT Collaboration): IOP 11 P10019 (2016).
    sasa  
    Reference

    [2] Radiation Detectors for Direct Dark Matter Search (pdf) (html) (翻訳) (reference)
    K. Mimuchi, JPS Conf. Proc. 11, 040001 (2016).
     暗黒物質は宇宙のエネルギー密度の1/4以上を占めていると信じられている。多くの実験が暗黒物質の研究に取り組んできたにも関わらず、この自然の明確な理解が得られていない。暗黒物質の直接探索は暗黒物質と普通のよく知られた物質との弾性散乱によって落としたエネルギーを検出することが狙いだ。今日において究極の暗黒物質の検出器は開発されていない。つまりこの分野において新たな技術の余地がまだあるということだ。この論文では、いくつかの暗黒物質の直接探索のための検出器の要請を批評する。
    Reference
    [1] F. Zwicky et. al.:Astrophys. J. 86 (1937) 217.
    [2] V. C. Rubin et. al.:Astrophys. J. 159 (1970) 379.
    [3] P. A. R. Ade et al. (Planck Collaboration): Astron. Astrophys. 571 (2014) A16.
    [4] D. Crowe et al.: Astrophys. J., 648 (2006) L109.
    [5] G. Jungman, M. Kamionkowski, and K. Griest: Phys. Rep. 267(1996)195.
    [6] D. Abercrombieet al.: arXiv 1507.00966.
    [7] M. Ackermann: Phys. Rev. D697 (2015) 122002.
    [8] L. Accardo et al. (AMS Collaboration): Phys. Rev. Lett.113 (2014) 121101.
    [9] O. Adriani et al. : Phys. Rev. Lett.111 (2013) 081102.
    [10] J. D. Lewin and P. F. Smith :Astropart. Phys. 6 (1996)87.
    [11] R. Bernabei et al.:Eur. Phys. J. C 73 (2013) 2648.
    [12] E. Aprile et al. (XENON Collaboration):Phys. Rev. Lett.109 (2012) 181301.
    [13] D.S. Akerib et al. (LUX Collaboration): arXiv 1512.03506.
    [14] R. Agnese et al.(SuperCDMS Collaboration): Phys. Rev. Lett.112 (2016) 241302.
    [15] R. Agnese et al.(SuperCDMS Collaboration): Phys. Rev. Lett.116 (2016) 071301.
    [16] P. Agnes et al. (DarkSide Collaboration): arXiv 1510.00702.
    [17] D.S. Akerib et al. (LUX Collaboration): arXiv 1602.03489.
    [18] E. Aprile et al. (XENON Collaboration):Phys. Rev. Lett.111 (2013) 021301.
    [19] C. Amole et al.(PICO Collaboration): Phys. Rev. Lett.114 (2015) 231302.
    [20] C. Amoleet al.(PICO Collaboration): arXiv 1510.07754.
    [21] T. Tanimori et al.: Phys. Lett. B 578 (2004) 241.
    [22] D.N. Spergel et al.: Phys. Rev. D37 (1988) 1353.
    [23] K. Abe et al.: Nucl. Instrum. and Meth. A716(2012)78.
    [24] E. Barbosa et al.(DM-Ice Collaboration): arXiv 1602.05939.
    [25] K. Fushimi: These proceedings.
    [26] J. Barreto et al.Phys. Lett. B 711 (2012) 264.
    [27] K. Nakamuraet al.: PTEP (2015) 043F01.
    [28] R. Yakabe et al.: These proceedings.
    [29] J.B.R. Battatet al.: Physics of the Dark Universe 9-10(2015) 1.
    [30] T. Naka et al. Review of Scientific Instruments 86(2015)0730701.

    ストロンチウム90カウンター開発研究関連

    [91] Nutrient analysis of fish and fish products(pdf)(html)
    Mark Roe, et al.,Publication DH, GOV.UK, 2013.

    [87] Nutrient analysis of fish and fish products(pdf)(html)
    Mark Roe, et al.,Publication DH, GOV.UK, 2013.

    [85] Chemical Reactions and the Composition of Sea Water(pdf)(html)
    Keith E. Chave, Journal of Chemical Education, vol. 48, 3, 1971

    [75] Dispersion and fate of 90Sr in the Northwestern Pacific and adjacent seas: Global fallout and the Fukushima Dai-ichi accident(pdf)
    [74] Application ofICP-DRC-MStoscreeningtestofstrontiumand plutoniuminenvironmentalsamplesatFukushima(pdf)
    [73] ResultsofanEClaboratorycomparisonon 40K, 90Sr and 137Cs indried bilberry powder(pdf)
    [72] On-line ion chemistry for the AMS analysis of 90Sr and 135,137Cs(pdf)
    [71] An overview of current knowledge concerning the health and environmental consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident(pdf)
    [70] Iodine isotopes in precipitation: Four-year time series variations before and after 2011 Fukushima nuclear accident(pdf)
    [69] Fukushima Daiichi Nuclear Plant accident: Atmospheric and oceanic impacts over the five years(pdf)
    [68] Deposition of fission and activation products after the Fukushima Dai-ichi nuclear power plant accident(pdf)(html)
      K. Shozugawa et al., Environmental Pollution 163 (2012) 243-247
      小豆川勝見(しょうずがわ かつみ)
      東京大学 大学院総合文化研究科 広域科学専攻
      環境分析化学研究室(松尾研究室) 助教
      要約(pdf)

    [67] Risk ofthyroidcanceraftertheFukushimanuclear power plantaccident(pdf)(html)
      S. Yamashita and S. Suzuki., Respiratory Investigation 51 (2013) 128-133
      山下俊一(長崎大学)
      要約(pdf)

    [66] Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident(pdf)(html)
      G. Katata et al., Journal of Environmental Radioactivity 111 (2012) 2-12
      堅田元喜(JAEA)
      要約(pdf)

    [65] 放射性ストロンチウム分析法(pdf), (html)
    文部科学省、放射能測定法シリーズ2、平成15年

    [64] Limits of detection, identification and determination: a statical approach for practitioners(pdf), (html)
    J. Vogelgesang and J. Hadrich, Accred Qual Assur 3 (1998) 242-255.

    [63] Transarterial Y90 radioembolization versus chemoembolization for patients with hepatocellular carcinoma: A meta-analysis(pdf), (html)
    Y. Zhang et al., BioScience Trends. 9(5) (2015)289-298.

    [62] Surveillance of Strontium-90 in Foods after the Fukushima Daiichi Nuclear Power Plant Accident(pdf), (html)
      H. Nabeshima et al., Food Hyg. Saf. Sci. 56 (4) (2015) 133.

    [61] 70マイクロメートル線量当量率を用いた90Sr/90Y汚染密度推定法(pdf), (html)
      H. Hirayama and K. Kondo, Jpn. J. Health Phys., 50 (4) (2015) 241-248.

    [60] Strontium 90 Activity in Bones of the A-bomb Exposed in Hiroshima and Exhumed on Ninoshima Island(pdf), (html)
      H. Kawamura et al., J. Rasiat. Res. 28 (1987) 109-116.

    [59] チェレンコフ光測定と液体シンチレーション測定による89Srと90Srの迅速測定法の検討(pdf), (html)
      T. Shimizu et al., Helth Phys. 20 (1985) 139-143.

    [58] 水中90Sr放射能濃度の90Yβ線測定による迅速簡便測定法(pdf), (html)
      H. Hirayama, et al., Transactions of the Atomic Energy Society of Japan, 14 (3) (2015) 141-150.

    [57] 人体における137Cs(pdf), (html)
      M. Uchiyama, Health Phys. 13 (1978) 75-92.
      キーワード:放射能、137Cs、
      Contents>>
    pp85137Csの生物学的半減期(年)は年齢(歳)に依存している。
    T_b=12.8 (X ^{1/2} + e^-X)
    ここでXは年齢
    しかし、乳幼児から20歳まで有効.熟年層はむしろ体重が顕著に効いてくる
    T_b=6 W^{3/2}
    ここでWは体重(kg)
    pp89体内の137Cs排泄促進に有効なものは カリウムフェロシアナイドないしナトリウムフェロシアナイドから調製されたプルシアンブルーで 験体群の1.2%は4日で投与した137Csの0%に、35.2%の検体は70%の量に減衰したことを観測した。


    [55] Zum Problem der Nachweisgrenze(pdf), (html)
      H. Kaiser, Fresenius Z. Anal. Chem. 209 (1965) 1-18.

    [54] Annals of the ICRP, ICRP PUBLICATION 119, Compendium of Dose Coefficients based on ICRP Publication 60
    Authors on behalf of ICRP
    K. Eckerman, J. Harrison, H-G. Menzel, C.H. Clement
    (pdf), (html)
      ICRP, ICRP Publication 119 (2011).

      
    [53] RADIATION PROTECTION, ICRP PUBLICATION 71, Age-dependent Doses to Members of the Public from Intake of Radionuclides: Part 4 Inhalation Dose Coefficients, A report of a Task Group of Committee 2 of the International Commission on Radiological Protection, ADOPTED BY THE COMMISSION IN SEPTEMBER 1995
    (pdf), (html)
      ICRP, ICRP Publication 71 (1995).

    [52] Exposure of a herbivorous fish to 134Cs and 137Cs from the riverbed following the Fukushima disaster(pdf), (html)
      J. Tsuboi et al. / Journal of Environmental Radioactivity 141 (2015) 32-37

    [51] The determination of Fukushima-derived cesium-134 and cesium-137 in Japanese green tea samples and their distribution subsequent to simulated beverage preparation(pdf), (html)
      M.C. Cook et al. / Journal of Environmental Radioactivity 153 (2016) 23-30

    [50] Radioactive Cs in the estuary sediments near Fukushima Daiichi Nuclear Power Plant(pdf), (html)
      S. Yamasaki et al. / Science of the Total Environment 551-552 (2016) 155-162

    [49] 家畜のストロンチウム-カルシウム差別率に伴うストロンチウム代謝に関する研究 I (pdf), (html)
      宮尾陟, 農林省家畜衛生試験場(昭和35年2月11日), NII-Electronic Library Service

    [48] SPECIATION OF STRONTIUM IN HUMAN AND BOVINE MILK (pdf), (html)
      G. L. SMITH et al., Polyhedron Vol. 4, No. 4, pp. 713-716, 1985

    [47] STRONTIUM ISOTOPES IN TREES AS AN INDICATOR FOR CALCIUM AVAILABILITY (pdf), (html)
      CATENA vol. 17, p. 1-11, Cremlingen 1990

    [46] Strontium-90 concentration measurements in human bones and teeth in Greece(pdf), (html)
      K.C. Stamoulis et al./The Science of the Total Enviironment 229( 199)9 16-182

    [45] Determination of strontium-90 in deer bones by liquid scintillation spectrometry after separation on Sr-specific ion exchange columns(pdf), (html)
      C. Landstetter, G. Wallner / J. Environ. Radioactivity 87 (2006) 315-324

    [44] Incorporation and Distribution of Strontium in Bone (pdf), (html)
      Bone Vol. 28, No. 4, April 2001:446–453

    [43] Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives(pdf), (html)
      Journal of Environmental Radioactivity 142 (2015) 136e151

    [42] Development of a new simultaneous separation of cesium and strontium by extraction chromatograph utilization of a hybridized macroporous silica-based functional material(pdf), (html)
      Separation and Purification Technology 127 (2014) 39-45

    [41] Radioactivity in milk consumed in Nigeria 10 years after Chernobyl reactor accident(pdf), (html)
      Nuclear Instruments and Methods in Physics Research A 422 (1999) 7788-783

    [40] Spectral identification of a 90Sr source in the presence of masking nuclides using Maximum-Likelihood deconvolution(pdf), (html)
      Nuclear Instruments and Methods in Physics Research A 728 (2013) 73-80

    [6] Determination of the 137Cs and 90Sr radioisotope activity concentrations found in digestive organs of sheep fed with different feeds (pdf)

    [5] Inventory and vertical migration of 90Sr fallout and 137Cs/90Sr ratio in Spanish mainland soils (pdf)

    [3] Measurement of 90Sr ativity with Cherenkov radiation in silia aerogel (html)(pdf)
      D. Brajnik, et al., Nucl. Instr. and Meth. A, 353 (1994), p. 217.
      keyword: Sr-90, Cherenkov radiation, silica aerogel
      - 翻訳(pdf)
      - 論文紹介

    [2] Cherenkov detector of 90Sr based on aerogel as radiator (html)(pdf)

    上へ

    肺がん、ラドン測定関連

    [21] Measurement of radon concentration in super-Kamiokande’s buffer gas(pdf) (html) (arxive) (翻訳) (reference)
    Y. Nakano, et al., NIMA 867 (2017) 108.
     スーパーカミオカンデ検出器にバッファー気体として清潔にした(purify)空気のラドン濃度を精密に測定するために、と同じくらい低い固有の(intrinsic)背景雑音を持つラドンに高い感度を持つ検出器を開発した。この論文では、スーパーカミオカンデの上のバッファー気体の測定と監視のための機能の結果と同等な、この検出器の建造(construction)と較正を議論する。2013年3月、バッファー気体内部にラドンを除去するために使用した冷却(chilled)活性炭(activate charcoal)システムをアップグレードした。改善した後、提供したガスのラドン濃度の劇的な減少(reduction)はに低下した。加えて、本来の場所のバッファー気体のラドン濃度は新しいラドン検出器を使用してが測定された。これらの測定に基づいて、スーパーカミオカンデのタンク自身からの汚染からバッファー気体のラドンの支配的な源が発生すると決定できた。  
    Reference
    [1] Y.Fukuda, et al., Nucl. Instr. Meth. A 501 (2003) 418–462.
    [2] K. Abe, et al., Nucl. Instr. Meth. A 737 (2014) 253–272.
    [3] J.N. Bahcall, Nucl. Instr. Meth. 110 (1973) 381–384.
    [4] J.Hosaka, et al., Phys. Rev. D 73 (2006) 112001.
    [5] Q.R. Ahmad, et al., Phys. Rev. Lett. 87 (2001) 071301.
    [6] S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913–917.
    [7] L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
    [8] B.T. Cleveland, et al., Astrophys. J. 496 (1998) 505–526.
    [9] J.N. Abdurashitov, et al., Phys. Rev. C 80 (2009) 015807.
    [10] M. Altmann, et al., Phys. Lett. B 616 (2005) 174–190.
    [11] G. Bellini, et al., Phys. Rev. D. 82 (2010) 033006.
    [12] G. Bellini, et al., Phys. Rev. Lett. 108 (2012) 051302.
    [13] G. Bellini, et al., Phys. Rev. D 89 (2014) 112007.
    [14] G. Bellini, et al., Nature 512 (2014) 383–386.
    [15] A. Gando, et al., Phys. Rev. C 92 (2015) 055808.
    [16] J. Hosaka, et al., Phys. Rev. D 73 (2006) 112001.
    [17] J.P. Cravens, et al., Phys. Rev. D 78 (2008) 032002.
    [18] K. Abe, et al., Phys. Rev. D 83 (2011) 052010.
    [19] K. Abe, et al., Phys. Rev. D 94 (2016) 052010.
    [20] Q.R. Ahmad, et al., Phys. Rev. Lett. 87 (2001) 071301.
    [21] Q.R. Ahmad, et al., Phys. Rev. Lett. 89 (2002) 011301.
    [22] B. Aharmim, et al., Phys. Rev. C. 72 (2005) 055502.
    [23] B. Aharmim, et al., Phys. Rev. C. 87 (2013) 015502.
    [24] S. Abe, et al., Phys. Rev. C 84 (2011) 035804.
    [25] P. C. de Holanda, A. Yu, Smirnov, Phys. Rev. D 69 (2004) 113002.
    [26] P.C. de Holanda, A. Yu, Smirnov, Phys. Rev. D 83 (2011) 113011.
    [27] V. Barger, Patrick Huber, Phys. Rev. Lett. 95 (2005) 211802.
    [28] A. Friedland, et al., Phys. Lett. B 594 (2004) 347–354.
    [29] O.G. Miranda, et al., J. High. Energy Phys. 10 (2006) 008.
    [30] S. Yamada, et al., IEEE Trans. Nucl. Sci. 57 (2010) 428–432.
    [31] Y. Takeuchi, et al., Phys. Lett. B 452 (1999) 418–424.
    [32] Y. Nakano, (Ph.D. thesis), University of Tokyo (2016).
    [33] Y. Takeuchi, et al., Nucl. Instr. Meth. A 421 (1999) 334–341.
    [34] C. Mitsuda, et al., Nucl. Instr. Meth. A 497 (2003) 414–428.
    [35] K. Hosokawa, et al., Progress. Theor. Exp. Phys. 033H01.
    [36] T. Iida, et al., Health Phys. 54 (1998) 139–148.
    [37] K.D. Chu, P.K. Hopke, Environ. Sci. Technol. 22 (1988) 711–717.
    [38] Genitron Instruments GmbH, FACTORY CALIBRATION AT GENITRON INSTRU- MENTS FACILITIES (Calibration Procedure of the AlphaGUARD Radon Monitor) Version: 03/2006.
    [39] M. Shimo, et al., J. At. Energy Soc. Jpn. 25 (1983) 562–570.
    [40] H. Sekiya, in: Proceedings of the Fifth Low Radioactivity Techniques Workshop (LRT 2015), Seattle, WA, USA, 2015. (AIP Conference Proceedings 1672 (2015) 080001, http://dx.doi.org/ 10.1063/1.4927996).

    [20] Radon and lung cancer: Assessing and mitigating the risk(pdf)(html)
    H. Choi, P. Mazzone, Clev. Cli. J. 81 (9) (2014) 567-575.

    [19] In situ gamma-ray spectrometry in the environment using dose rate spectroscopy(pdf)(html)
    Young-Yong Ji, et al., Radiation Physics and Chemistry Volume 119, February 2016, Pages 90–102.

    [18] Measuring radon-222 in soil gas with high spatial and temporal resolution(pdf)
    Darren Huxtable, David Read, George Shaw, Journal of Environmental Radioactivity 167 (2017) 36-42.

    [17] Diurnal variations of 218Po, 214Pb, and 214Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India(pdf)
    K.S. Pruthvi Rani, L. Paramesh, M.S. Chandrashekara, Journal of Environmental Radioactivity 138 (2014) 438-443.

    [16] Variability of radon and thoron equilibrium factors in indoor environment of Garhwal Himalaya(pdf)
    Mukesh Prasad, Mukesh Rawat, Anoop Dangwal, Tushar Kandari, G.S. Gusain, Rosaline Mishra, R.C. Ramola, Journal of Environmental Radioactivity 151 (2016) 238-243.

    [15] Atmospheric residence time of 210Pb determined from the activity ratios with its daughter radionuclides 210Bi and 210Po (pdf)
    DP. Semertzidou, G.T. Piliposian, P.G. Appleby, Journal of Environmental Radioactivity 160 (2016) 42-53.

    [14] Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer (pdf)
    Cheng-Wei Chiang, Po-Yan Tseng, Physics Letters B 767 (2017) 289–294.

    [13] Probing a dark photon using rare leptonic kaon and pion decays(pdf)
    Darren Huxtable, David Read, George Shaw, Journal of Environmental Radioactivity 167 (2017) 36-42.

    [12] The effect of sand/cement ratio on radon exhalation from cement specimens containing 226Ra (pdf)
    S. Takriti, R. Shweikani, A.F. Ali, G. Raja, Radiation Measurements 38 (2004) 31–36.

    [11] Residential Radon Gas Exposure and Lung Cancer; The Iowa Radon Lung Cancer Study(pdf)
    Darren Huxtable, David Read, George Shaw, Journal of Environmental Radioactivity 167 (2017) 36-42.

    [10] Residential Radon Gas Exposure and Lung Cancer; The Iowa Radon Lung Cancer Study(pdf)
    R. William Field, et al., American Journal of Epidemiology vol. 151, No. 11, 2000.

    [9] LUNG CANCER IN NEVER SMOKERS: CLINICAL EPIDEMIOLOGY AND ENVIRONMENTAL RISK FACTORS(pdf)(html)
    Jonathan M. Samet, et al., Clin Cancer Res. 2009 September 15; 15(18): 5626–5645.

    [8] α線およびγ線スペクトロメトリに基づく水中ラドン濃度の精密計測法の開発(pdf)(html)
    濱中俊一(1998)

    [7] WHO HANDBOOK ON INDOOR RADON A PUBLIC HEALTH PERSPECTIVE(pdf)

    [6] Trends in smoking and lung cancer mortality in Japan, by birth cohort, 1949–2010(pdf)(html)
    Ikuko Funatogawa, Takashi Funatogawa, Eiji Yano, Bulletin of the World Health Organization 2013;91:332-340.

    [5] Integrated measurements of 218Po, 214Pb and 214Bi + 214Po in air under environmental concentrations(pdf)
    D.S. Pressyanov, Nuclear Instruments and Methods in Physics Research A 397 (1997) 448-454

    [4] Radon gas distribution in natural gas processing facilities and workplace air environment(pdf)
    M.S. Al-Masri, Journal of Environmental Radioactivity 99 (2008) 574-580

    [3] Exposures to 222Rn and its progeny derived from implanted 210Po activity(pdf)
    D. Nikezic, Radiation Measurements 41 (2006) 101 – 107

    [3] Lung Cancer in Never Smokers: A Review(pdf)
    ] J. Subramanian, R. Govindan, Journal of Clinical Oncology 25 (2007) 561–570

    [2] Investigating the role of human papillomavirus in lung cancer (pdf)
    E. Argyri, Papillomavirus Research 3 (2017) 7–10
      要約(pdf)

    [1] Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review(pdf)
    上へ

    PET開発関連

    [39] Time of flight in PET revisited(pdf), (html)
      W. W. Moses, et al., IEEE Trans. on Nucl. Sci. 50, 5 (2003)

    [38] Prospects for Time-of-Flight PET using LSO Scintillator(pdf), (html)
      W. W. Moses, et al., IEEE Trans. on Nucl. Sci. 46, 3 (1999)

    [37] Evaluation of a high resolution silicon PET insert module(pdf), (html)
      Milan Grkovski, et al., Nucl. Instr. and Meth. A 788 (2015) 86-94

    [36] A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications(pdf), (html)
      Qiang Wang, et al., Nucl. Instr. and Meth. A 794 (2015) 151-159

    [35] From PET detectors to PET scanners(pdf), (html)
      J.L. Humm, A. Rosenfeld, A. Del Guerra,
      European Journal of Nuclear Medicine and Molecular Imaging, 30 (2003), p. 1574

    [31] Development of a wavelength-shifting fibre gamma camera (pdf), (html)
      A. J. Soares et al., Conf. Reco., Nucl. Scie. Symp. (1999) IEEE
      keyword: PET, CsI(Na), WLSF, gamma camera
      - 翻訳(pdf)

    [30] Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry (pdf)

    [29] Performance of the AX-PET Demonstrator (pdf)

    [28] AX-PET: A novel PET concept with G-APD readout (pdf)

    [27] The AX-PET experiment: A demonstrator for an axial Positron Emission Tomograph (pdf)

    [26] Development of an ultrahigh-resolution Si-PM-based dual-head GAGG coincidence imaging system (pdf)

    [25] A compact and high efficiency GAGG well counter for radiocesium concentration measurements (pdf)

    [24] Characterization of GAGG:Ce scintillators with various Al-to-Ga ratio (pdf)

    [23] Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis (pdf)

    [22] Sensitivity booster for DOI-PET scanner by utilizing Compton scattering events between detector blocks (pdf)

    [21] Qualification test of a MPPC-based PET module for future MRI-PET scanners (pdf),(html)
      Y. Kurei et al. / Nucl. Instr. and Meth. A 765 (2014) 275-279
      Keywords:Multi-Pixel Photon Counter (MPPC)
      Positron Emission Tomography (PET)
      Magnetic Resonance Imaging (MRI)
      - 翻訳(pdf)


    [20] A novel method for the line-of-response and time-of-flight reconstruction in TOF-PET detectors based on a library of synchronized model signals (pdf), (html)
      P. Moskal et al. / Nucl. Instr. and Meth. A 775 (2015) 54 - 62
      Keywords:Scintillator detectors, Positron Emission Tomography, Time-of-flight, J-PET
      - 翻訳(pdf)
      - 論文紹介

    [18] The Challenge of Detector Designs for PET (pdf)

    [17] Novel Geometrical Concept of a High Performance Brain PET Scanner - Principle, Design and Performance Estimates (pdf)

    [16] Joint Reconstruction of Image and Motion in Gated Positron Emission Tomography (pdf)

    [15] Development of a High Precision Axial 3-D PET for Brain Imaging (pdf)

    [14] The AX-PET project: Demonstration of a high resolution axial 3D PET (pdf), (html)
      keyword: Positron emission tomography, PET, LYSO scintillator, G-APD
      - 翻訳(pdf)
      - 論文紹介(pdf)

    [13] AX-PET: A novel PET detector concept with full 3D reconstruction (pdf)

    [12] GEANT4 studies on the propagation and detection of scintillation light in long thin YAP crystals (pdf)

    [11] Wavelength shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules (pdf)

    [10] High precision axial coordinate readout for an axial 3-D PET detector module using a wave length shifter strip matrix (pdf)

    [9] Recent advances and future advances in time-of-flight PET (pdf)

    [8] Optimization of the effective light attenuation length of YAP:Ce and LYSO:Ce crystals for a novel geometrical PET concept (pdf)

    [7] Trends in PET imaging (html)(pdf)
      William W. Moses, Nucl. Instr. and Meth. A 471 (2001) 209 - 214
      keyword: PET instrumention
      - 翻訳(pdf)
      - 論文紹介

    [2] Photodetectors for nuclear medical Imaging (pdf 297KB)

    [1] The AX-PET demonstrator - Design, construction and characterization (html)(pdf)
      P. Beltrame et al. / Nucl. Instr. and Meth. A 654 (2011) 546 - 559
      keyword: Sr-90, Cherenkov radiation, silica aerogel
      - 翻訳(pdf)
      - 論文紹介
      

    上へ

    ハドロン物理関連

    [25] New Limit on the T-Violation Transverse Muon Polarization in K+->π0e+ν decays (pdf) (翻訳) (reference)
    M. Abe, et al., Phys. Rev. Lett. 93, 13 (2004) 131601.
    KEK-E246 Exp.
    Reference

    [24] Structure near the K-+p+p threshold in the in-flight 3He(K-,Λp)n reaction (pdf) (翻訳) (reference)
    Y. Sada, et al., Prog. Theo. Exp. Ohys. 2016 051D01.
    J-PARC E15 Exp.
    Reference

    [23] Experimental study of the radiative decay K+->μ+νe+e- K+->e+νe+e- (pdf) (翻訳) (reference)
    A. A. Poblaguev et al., Phys. Rev. Lett. 89, 6 (2002) 061803.
    BNL-AGS 865 Exp.
    Reference

    [22] First observation of the decay K+->e+νμ+μ- (pdf) (翻訳) (reference)
    H. Ma et al., Phys. Rev. D 73, 037101 (2006).
    BNL-AGS 865 Exp.
    Reference

    [21] Measurement of K+->π0π0e+ν (K00e4) decay using stopped positive kaons (pdf) (翻訳) (reference)
    S. Shimizu et al., Phys. Rev. D 70, 037101 (2004).
    KEK-E470 Exp.
    Reference

    [20] T-violation muon polarization in Kμ3 decays (pdf) (翻訳) (reference)
    G. Belanger and C. Q. Geng, Phys. Rev. D 44, 9 (1991) 2789.
    Theory
    Reference

    [19] Non-standerd-model CP violation in Kμ3 Decays as a method of probing for new physics (pdf) (翻訳) (reference)
    R. Garisto and G. Kane, Phys. Rev. D 44, 7 (1991) 2038.
    Reference

    [18] Kμ3 Decay: Tests fot Time Reveral and Two-Component Theory (pdf) (翻訳) (reference)
    J. J. Sakurai, Phys. Rev. 109, 3 (1958) 980.
    Reference

    [17] Precise tests of low energy QCD from Ke4 decay properties(pdf) (翻訳) (reference)
    J. R. Batley, Eur. Phys. J. C 70 (2010) 635-657.
    NA48/2
    Reference

    [16] Kl3 form factors at order p6 of chiral perturbation theory(pdf) (翻訳) (reference)
    P. Post and K. Schicher, Eur. Phys. J. C 25 (2002) 427-443.
    Reference

    [15] New measurement of the K±->π+π-e±ν (Ke4) decay branching ratio and hadronic form factors(pdf) (翻訳) (reference)
    J. B. Batley, et al., Phys. Lett. B 715 (2012) 105-115.
    NA48/2  
    Reference

    [14] Study of the K-->π0e-ν decay (pdf) (翻訳) (reference)
    I. V. Ajinenko, et al., Phys. Lett. B 574 (2003) 14-20.
    Reference

    [13] Dalitz plot density analysis in Kμ3 decay (pdf) (翻訳) (reference)
    D. Haidt, et al., Phys. Lett. 29B 10 (1969) 691.
    X2 collaboration  
    Reference

    [12] Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment(pdf) (翻訳) (reference)
    D. Babusci et al., Phys. Lett. B 730 (2014) 89-94.
    KLOE-2 collaboration  
    Reference

    [11] A measurement of the (K+→e+ν)/(K+→μ+ν) branching ratio(pdf) (翻訳) (reference)
    K. S. Heard et al., Phys. Lett. B 55, 3 (1975) 327-330.
     
    Reference

    [10] A measurement of K+eνγ decay(pdf) (翻訳) (reference)
    K. S. Heard et al., Phys. Lett. B 55, 3 (1975) 324-326.
     
    Reference

    [9] Measurement of K0L flux at the J-PARC neutral-Kaon beam line(pdf) (翻訳) (reference)
    K. Shiomi et al., Nucl. Instr. Meth. A 664 (2012) 264.
    KOTO実験  
    Reference

    [8] Fabirication of silica aerogel with n=1.08 for e++ separation in a threshold Cherenkov counter of the J-PARC TREK.E36 experiment(pdf) (翻訳) (reference)
    M. Tabata et al., Nucl. Instr. Meth. A 795 (2015) 206.
    E36実験 シリカエアロゲルチェレンコフ検出器開発  
    Reference

    [7] A measurement of the K+→e+νeγ structure decay(pdf) (翻訳) (reference)
    J. Heintze, et al., Nuclear Physics B 1977.
    abst  
    Reference

    [6] Analysis of K+→e+νeγ in light-front quark model and chiral perturbation theory of order p6 (pdf)(arxiv)(html) (翻訳) (reference)
    Chuan-Hung Chen, et al., Phys. Rev. D. 77 (2008) 014004.
    abst  
    Reference

    [5] Precise measurement of Γ(K → eν(γ))/Γ(K → μν(γ)) and study of K → eνγ(pdf)(html) (翻訳) (reference)
    F. Ambrosino et al., Eur. Phys. J. C 64 (2009) 627.
    abst  
    Reference

    [4] Proposal for J-PARC 30 GeV Proton Synchrotron
      Gamma-Ray Spectroscopy of Light Λ Hypernuclei II (pdf)
    H. Tamura, J-PARC PAC 2010-04 (J-PARC E36)

    [3]J-PARC Experimental Proposal
      Measurement of Γ(K+ → e+ν)/Γ(K+ → μ+ν) and Search for heavy sterile neutrinos using the TREK detector system (pdf)
    S. Shimizu, J-PARC PAC 2010-04 (J-PARC E36)

    [2] Proposal for an experiment at the 50-GeV PS
      Measurement of the cross sections of Σp scatterings (pdf)
    K. Miwa, J-PARC PAC 2010-12 (J-PARC E40)

    [1] REVIEW OF PARTICLE PHYSICS
    PHYSICAL REVIEW D 98, 030001 (2018). (pdf)
    Chinese Physics C Vol. 40, No. 10 (2016) 100001. (pdf)
    Chinese Physics C Vol. 38, No. 9 (2014) 090001. (pdf)
    上へ

    素粒子研究関連

    [5] A view of neutrino studies with the next generation facilities (pdf) (html) (翻訳) (reference)
    L. Stanco, Rev. Phys. 1 (2016) 90.
    abst  
    Reference

    [4] Flavor Physics and CP violation (pdf) (html) (翻訳) (reference)
    P. Chang et al., Prog. Part. Nucl. Phys. 97 (2017) 261.
    現在のCKM(カボビ・小林・益川)パラダイムは不十分で、すごくたくさんのパラメータを持つ。フレーバー物理とCP破れ研究(FPCP)の主な狙いは標準模型(SM)を超える新物理を明らかにするための追跡である。LHC RUN1の期間の2つのハイライトは混合BsのCPV位相φsとBs->K*0 μ+ μ-崩壊、ここで、途中経過はSMに一致していることがわかっている。さらにB0->K*0 μ+ μ-崩壊のP'5角度変位アノマリーとRK(*)のB->K0 μ+ μ-とB->K0 e+ e-の頻度の比、そしてB->D(*)τν崩壊におけるBaBarアノマリー、これらはZ’, 荷電ヒッグス、レプトクォークを追加した点でこれらのフレーバー過程の考えうる新物理を示唆する。チャームレスハドロニック、セミレプトニック、純粋なレプトニックとradioactive B崩壊は新物理のさらに様々なウィンドウを提供するために継続している。B物理から離れて、K->μγγ, μμμ, eee崩壊とKセクターのε'/ε、μ->e遷移、ミューオンg-2と電子と中性子のダイポール運動量、そして少しのチャーム物理探索が新物理の広範囲帯の先駆者のウィンドウを提供する。最後に、トップクォークtと125 GeVヒッグスボゾンhを巻き込んだ電荷的に中性のフレーバー遷移: t->ch と h->μτ はFPCPへの新たな窓を与える。ここで、P’5アノマリーによって起こさせるまたは関する新たなZ’はトップクォーク過程に類似して現れる、おそらくミューオンg-2または稀なkaon過程のような低エネルギー現象に結合される。特に、我々はフレーバー破れを制御するために区別した対称性がない2つのヒッグスの二重項モデルの新物理の潜在性をSM2として主張する。むしろSMに似ているhの制限を設けて近づけるとして、中性ヒッグスのフレーバー遷移結合(FCNH)は小さい混合角によって抑制されるが、エキゾティック・ヒッグス二重項はFCNH結合を処理する、我々はちょうどこの探索を開始する。LHC Run 2はこの過程を走らせ、そしてBelle II B物理プログラムがもうすぐ開始で、フレーバーとCPVセクターにおいてとても楽しみである。
    Reference
    [1] F. Zwicky et. al.:Astrophys. J. 86 (1937) 217.
    [2] V. C. Rubin et. al.:Astrophys. J. 159 (1970) 379.

    [3] Search for Resonant Diphoton Production with the D0 Detector (pdf), (html)
    V. M. Abazov et al. (D0 Collaboration): Phys. Rev. Lett. 102, 231801 (2009).

    [2] Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties (pdf), (html)
    T. Aaltonen et al. (CDF Collaboration) Phys. Rev. D 87, 092002 (2013).

    [1] Evidence for D0-bar{D0} Mixing (pdf), (html) (arxive)
    M. Starič et al. (Belle Collaboration) Phys. Rev. Lett. 98, 211803 (2007).

    上へ

    その他

    [5] Depolarization of Positive Muon in Condensed Matter (pdf), (html)
      R. A. Swanson, Phys. Rev. 112, 2 (1958) 580.

    [4] Pulsed source of ultra low energy positive muons for near-surface μSR studies(pdf), (html)
      P. Bakule, et al., Nucl. Instr. Meth. B 266 (2008) 335.

    [3] Geant4—a simulation toolkit(pdf), (html)
      S. Agostinelli et al. / Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303.

    [2] Impact Frequency Estimate of Micron-sized Meteoroids and Debris on Tanpopo Capture Panels on the ISS (pdf), (html)
      M. Kurihara et al., Procedia Engineering 103 (2015) 334 - 340
      Keywords: Space debris, ISS, Silica Aerogel

    上へ
    [1] 光電子増倍管 その基礎と応用 3rd Edition
     浜松ホトニクス社 (2007)(pdf)

    日本物理学会誌

    2016 1 2 3 4 5 6 7 8 9 10
    2015 1 2 3 4 5 6 7 8 9 10 11 12
    2014 1 2 3 4 5 6 7 8 9 10 11 12
    2013 1 2 3 4 5 6 7 8 9 10 11 12
    2012 1 2 3 4 5 6 7 8 9 10 11 12
    上へ

    IEEE Conference Record

    IEEE NSS MIC 2014 Conference Record
    上へ

    卒論・修士・学位論文

    神戸大


    2018
    [0] 矢ヶ部遼太 Direction-sensitive direct dark matter search with a three dimentional tracking gaseiys detector
    (manuscript_v0)

    千葉大


    2017
    [1] 伊藤博士 A study and development of real-time strontium-90 counter based on Cherenkov radiation detection. (pdf)

    2016
    [4] 磯部
    [3] 井尻
    [2] 兼子奈緒見 WLSFを用いたPET検査用γ線検出器の開発  (pdf)
    [1] 小林篤史 高性能PET装置用ガンマ線測定器の開発  (pdf)

    2015
    [2] 上山俊輔
    [1] 児玉諭士 J-APRC E36実験のためのスパイラルファイバートラッカーの開発  (pdf)

    2014
    [5] 大和久耕平
    [4] 韓樹林
    [3] 雲越大輔 クリアファイバーを用いたチェレンコフカウンターの開発  (pdf)
    [2] 伊藤博士 高汎用性しきい値型粒子識別装置の開発    (pdf)
    [1] 飯島周多郎 リアルタイム大面積90Sr検出器の開発  (pdf)

    2013
    [2] 玉津
    [2] 新田
    [1] 丸橋健太 90Sr β線即時検出器の開発  (pdf)

    2012
    [3] 金山沙緒里 炭素線治療時に生じる二次粒子の炭素同位体の成分評価に向けたレンジカウンタの開発  (pdf)
    [2] 岸
    [1] 久保将人 LEPS2 のための WLS fiber と MPPC を用いたエアロゲルチェレンコフカウンターの開発研究

    2009
    [1] 田端誠 Study of Transparent Silica Aerogel over the Wide Range of Densities
    2008
    [1] 高屈折率および低屈折率シリカエアロゲルを用いたチェレンコフカウンターによる粒子識別  東海林彰(pdf)

    2007
    [1] シリカエアロゲルを用いたリングイメージングチェレンコフカウンターの開発 倉谷厚志(pdf)

    2006
    [1] 田端誠 気体-液体間の屈折率空白域を埋めるシリカエアロゲルの新製法の研究開発  (pdf)

    2002
    [1] 斎藤真一 Belle Silica Aerogel Cherenkov検出器の粒子識別能力の向上及びB中間子の再構成に関する研究  (pdf)

    2000
    [2] 七尾美緒 BELL実験におけるエアロジェルチェレンコフカウンターの粒子識別能力の評価  (pdf)
    [1] 海野祐士 PID Performance by BELLE Aerogel Cerenkov Counter  (pdf)

    中央大


    1998
    BELLE における低屈折率シリカエアロジェルチェレンコフカウンターの研究及 び開発 大場隆人

    京都大

    [] J-PARC K1.8ビームラインに用いる粒子識別検出器の開発と性能評価
     京都大学 足立智 (2010)(pdf)

    [] T2K実験において用いられる半導体光検出器MPPCの大量測定
     京都大 永井直樹(2009)(pdf)

    [] MPPC読み出しによるシンチレーションカウンターを用いた荷電粒子検出
     奈良女子大 木原理美・脇田紗弥佳(2011)(pdf)

    [] MPPCの基本特性およびシンチレーションカウンターへの応用
     奈良女子 辻知佳・宮田香織(2008)(pdf)

    [] 新型MPPCの性能評価
     信州大 小林秋人 (2011)(pdf)

    [] MPPCを用いた小型放射線検出器の開発と性能評価
     信州大 小倉隆義(2011)(pdf)

    [] MPPCの安定性能の研究
     信州大 佐久間隆幸(2010)(pdf)

    [] MPPCとストリップ型プラスチックシンチレータの研究
     信州大 戸塚俊介(2009)(pdf)

    [] MPPCの性能評価方法の研究
     信州大 坪川貴俊(2007)(pdf)

    [] Belle II実験用 新型粒子識別装置Aerogel RICHの開発
     首都大 岩田修一(2011)(pdf)

    上へ